Research on the real-time simulation system of dual stator winding induction generator with variable speed

Author(s):  
Lingshun Liu ◽  
Jianhai Li ◽  
Chenghai Lu
2014 ◽  
Vol 548-549 ◽  
pp. 1800-1803 ◽  
Author(s):  
Gen Yuan Zhang

Hydraulic simulation models of water pipe networks (WPN) are routinely used for operational investigations and network design purposes. However, their full potential is often never realized because in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and reflects the network operational conditions that were prevalent at that time. They were then applied as part of a reactive investigation. An urban water distribution network real time simulation system based on EPANET system using OPC (object linking and Embedding for Process control) communication was built in this paper. In order to make real-time simulation of water distribution network, the real-time data was collected every 15 minutes, the real time data were received and sent into water distribution network simulation model by OPC communication of EPANET system. The real-time data included total head of reservoir, flow rate, pressure, pump operation information. The real-time simulation system can give timely warning of changes for normal network operation, providing capacity to minimize customer impact and comparing the simulation results with the real-time data collected. The real time simulation system of urban water pipe network solved the problem of data input and user interaction compare to traditional network model. It offers a way for the development of intelligent water network.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5764
Author(s):  
Baoling Guo ◽  
Amgad Mohamed ◽  
Seddik Bacha ◽  
Mazen Alamir ◽  
Cédric Boudinet ◽  
...  

Variable Speed Hydro-Electric Plant (VS-HEP) equipped with power electronics has been increasingly introduced into the hydraulic context. This paper is targeting a VS-HEP Power Hardware-In-the-Loop (PHIL) real-time simulation system, which is dedicated to different hydraulic operation schemes tests and control laws validation. Then, a proper hydraulic model will be the key factor for building an efficient PHIL real-time simulation system. This work introduces a practical and generalised modelling hydraulic modelling approach, which is based on ‘Hill Charts’ measurements provided by industrial manufacturers. The hydraulic static model is analytically obtained by using mathematical optimization routines. In addition, the nonlinear dynamic model of the guide vane actuator is introduced in order to evaluate the effects of the induced dynamics on the electric control performances. Moreover, the reduced-scale models adapted to different laboratory conditions can be established by applying scaling laws. The suggested modelling approach enables the features of decent accuracy, light computational complexity, high flexibility and wide applications for their implementations on PHIL real-time simulations. Finally, a grid-connected energy conversion chain of bulb hydraulic turbine associated with a permanent magnet synchronous generator is chosen as an example for PHIL design and performance assessment.


2017 ◽  
Vol 142 ◽  
pp. 2102-2108 ◽  
Author(s):  
V.K. Arun Shankar ◽  
S. Umashankar ◽  
S. Paramasivam ◽  
H. Norbert

2019 ◽  
Vol 2019 (16) ◽  
pp. 1217-1220 ◽  
Author(s):  
Qiao Li ◽  
Yinxing Xiang ◽  
Qing Mu ◽  
Xing Zhang ◽  
Xiongfei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document