Optimization design of Switched Reluctance Motor based on Particle Swarm Optimization

Author(s):  
Jie Gao ◽  
Hexu Sun ◽  
Lin He ◽  
Yan Dong ◽  
Yi Zheng
2019 ◽  
Vol 41 (14) ◽  
pp. 4114-4128 ◽  
Author(s):  
Chih-Hong Lin

A switched reluctance motor (SRM) drive system has highly nonlinear uncertainties owing to a convex construction. It is hard for the linear control methods to achieve good performance for the SRM drive system. An adaptive nonlinear backstepping control system using the mended recurrent Romanovski polynomials neural network and mended PSO with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SRM drive system. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the mended recurrent Romanovski polynomials neural network and the error estimated law are established. Furthermore, to help improve convergence and to obtain better learning performance, the mended particle swarm optimization (PSO) algorithm is utilized for adjusting the two varied learning rates of the two parameters in the mended recurrent Romanovski polynomials neural network. Finally, some experimental results and a comparative analysis are verified that the proposed control scheme has better control performances for controlling the SRM drive system.


Sign in / Sign up

Export Citation Format

Share Document