Design optimization of Switched Reluctance Machine using Particle Swarm Optimization

Author(s):  
M. Balaji ◽  
V. Kamaraj
Author(s):  
Mohammad Reza Farmani ◽  
Jafar Roshanian ◽  
Meisam Babaie ◽  
Parviz M Zadeh

This article focuses on the efficient multi-objective particle swarm optimization algorithm to solve multidisciplinary design optimization problems. The objective is to extend the formulation of collaborative optimization which has been widely used to solve single-objective optimization problems. To examine the proposed structure, racecar design problem is taken as an example of application for three objective functions. In addition, a fuzzy decision maker is applied to select the best solution along the pareto front based on the defined criteria. The results are compared to the traditional optimization, and collaborative optimization formulations that do not use multi-objective particle swarm optimization. It is shown that the integration of multi-objective particle swarm optimization into collaborative optimization provides an efficient framework for design and analysis of hierarchical multidisciplinary design optimization problems.


2012 ◽  
Vol 538-541 ◽  
pp. 3074-3078
Author(s):  
Yi Liu ◽  
Cai Hong Mu ◽  
Wei Dong Kou ◽  
Jing Liu

This paper presents a variant of the particle swarm optimization (PSO) that we call the adaptive particle swarm optimization with dynamic population (DP-APSO), which adopts a novel dynamic population (DP) strategy whereby the population size of swarm can vary with the evolutionary process. The DP strategy enables the population size to increase when the swarm converges and decrease when the swarm disperses. Experiments were conducted on two well-studied constrained engineering design optimization problems. The results demonstrate better performance of the DP-APSO in solving these engineering design optimization problems when compared with two other evolutionary computation algorithms.


Sign in / Sign up

Export Citation Format

Share Document