Induction motor states and parameters estimation using Extended Kalman Filter with reduced number of measurements

Author(s):  
Jirasak Laowanitwattana ◽  
Sermsak Uatrongjit
2013 ◽  
Vol 7 (7) ◽  
pp. 607-617 ◽  
Author(s):  
Xinan Zhang ◽  
Gilbert Foo ◽  
Mahinda Don Vilathgamuwa ◽  
King Jet Tseng ◽  
Bikramjit Singh Bhangu ◽  
...  

Author(s):  
Mohamed Chebaani ◽  
Amar Goléa ◽  
Med Toufik Benchouia ◽  
Noureddine Goléa

Purpose Direct Torque Control (DTC) of induction motor drives is a well-established technique owing to features such as fast dynamic and insensibility to motor parameters. However, conventional DTC scheme, based on comparators and the switching table, suffers from large torque and flux ripples. To improve DTC performance, this study aims to propose and implement a sensorless finite-state predictive torque control using extended Kalman Filter in dSPACE environment. Design/methodology/approach This paper deals with the design of an extended Kalman filter for estimating the state of an induction motor model and for sensorless control of systems using this type of motor as an actuator. A complex-valued model is adopted that simultaneously allows a simpler observability analysis of the system and a more effective state estimation. Findings Simulation and experimental results reveal that the drive system, associated with this technique, can effectively reduce flux and torque ripples with better dynamic and steady state performance. Further, the proposed approach maintains a constant switching frequency. Originality/value The proposed speed observer have been developed and implemented experimentally under different operating conditions such as parameter variation, no-load/load disturbances and speed variations in different speed operation regions.


Author(s):  
Abdellatif Bellar ◽  
Mohammed Arezki Si Mohammed

The moment of inertia parameters play a critical role in assuring the spacecraft mission throughout its lifetime. However, determination of the moment of inertia is a key challenge in operating satellites. During satellite mission, those parameters can change in orbit for many reasons such as sloshing, fuel consumption, etc. Therefore, the inertia matrix should be estimated in orbit to enhance the attitude estimation and control accuracy. This paper investigates the use of gyroscope to estimate the attitude rate and inertia matrix for low earth orbit satellite via extended Kalman filter. Simulation results show the effectiveness and advantages of the proposed algorithm in estimating these parameters without knowing the nominal inertia. The robustness of the proposed algorithm has been validated using the Monte-Carlo method. The obtained results demonstrate that the accuracy of the estimated inertia and angular velocity parameters is satisfactory for satellite with coarse accuracy mission requirements. The proposed method can be used for different types of satellites.


Sign in / Sign up

Export Citation Format

Share Document