Control of ultra-high switching frequency power converters using virtual flux-based direct power control

Author(s):  
Milad Golzar ◽  
Huynh Van Khang ◽  
Alf Magne Midtbo Versland
2013 ◽  
Vol 385-386 ◽  
pp. 1216-1219
Author(s):  
Yun Liang Wang ◽  
Yong Le Zhao

This paper presents fixed switching frequency direct power control (FSF-DPC) for three-phase AC/DC converter. Sensorless control strategies based on virtual-flux can optimize the performance of the system. In this paper, realization of pulse width modulation method for FSF-DPC is presented. The simulation results show that the system running performance is good.


2020 ◽  
Vol 64 (2) ◽  
pp. 133-143
Author(s):  
Ahmed Reguig Berra ◽  
Said Barkat ◽  
Mansour Bouzidi

This paper proposes a Virtual Flux Predictive Direct Power Control (PDPC) for a five-level T-type multi-terminal Voltage Source Converter High Voltage Direct Current (VSC-HVDC) transmission system. The proposed PDPC scheme is based on the computation of the average voltage vector using a virtual flux predictive control algorithm, which allows the cancellation of active and reactive power tracking errors at each sampling period. The active and reactive power can be estimated based on the virtual flux vector that makes AC line voltage sensors not necessary. A constant converter switching frequency is achieved by employing a multilevel space vector modulation, which ensures the balance of the DC capacitor voltages of the five-level t-type converters as well. Simulation results validate the efficiency of the proposed control law, and they are compared with those given by a traditional direct power control. These results exhibit excellent transient responses during range of operating conditions.


2019 ◽  
Vol 11 (9) ◽  
pp. 2604 ◽  
Author(s):  
Arzhang Yousefi-Talouki ◽  
Shaghayegh Zalzar ◽  
Edris Pouresmaeil

In this paper, a direct power control (DPC) technique is proposed for matrix converter-fed grid-connected doubly fed induction generators (DFIGs). In contrast to what has been investigated in the past for direct torque control (DTC) or DPC of matrix converter-fed DFIGs, the active and reactive powers are regulated in a fixed switching frequency using indirect space vector modulation (ISVM) technique. Hence, designing input filters for matrix converters (MCs) becomes convenient. In addition, the reactive component of input side of MC is controlled which leads to reduction of distortion in grid current waveform. Also, an extensive discussion is addressed for nonlinear voltage errors of MC that may cause inaccurate power control. Simulation results done in MATLAB/Simulink show the effectiveness of the proposed method.


2013 ◽  
Vol 441 ◽  
pp. 328-331
Author(s):  
Hui Zhao ◽  
Biao Wang ◽  
Hong Jun Wang ◽  
You Jun Yue

In this paper, we study a modified predictive direct power control scheme (P-DPC).This scheme which based on model predictive control (MPC) uses a discrete rectifier model to infer the predictive direct power control theme again, and selects the operating time of voltage vector and voltage vector to realize fixed switching frequency through setting the minimum power errors of each sampling period. This control scheme has a lower switching frequency compared to MP-DPC; and it is still simple and clear implemented in the stationary reference frame directly, meanwhile, it does not need PI controllers or voltage-oriented controllers compared to other developed control schemes. We make simulations using MATLAB. The result show the excellence of this novel predictive direct power control scheme through improving the switching frequency, current THD and active power and reactive power quality compared to MP-DPC and LUT-DPC.


2001 ◽  
Vol 37 (4) ◽  
pp. 1019-1027 ◽  
Author(s):  
M. Malinowski ◽  
M.P. Kazmierkowski ◽  
S. Hansen ◽  
F. Blaabjerg ◽  
G.D. Marques

Sign in / Sign up

Export Citation Format

Share Document