3-degree-of-freedom real-time human hand following robot arm using visual feedback

Author(s):  
M. Nazreen Bin Zainal Abidin ◽  
Syed Saad Azhar Ali ◽  
Syed Hasan Adil
Author(s):  
Martin Hosek ◽  
Michael Valasek ◽  
Jairo Moura

This paper presents single- and dual-end-effector configurations of a planar three-degree of freedom parallel robot arm designed for automated pick-place operations in vacuum cluster tools for semiconductor and flat-panel-display manufacturing applications. The basic single end-effector configuration of the arm consists of a pivoting base platform, two elbow platforms and a wrist platform, which are connected through two symmetric pairs of parallelogram mechanisms. The wrist platform carries an end-effector, the position and angular orientation of which can be controlled independently by three motors located at the base of the robot. The joints and links of the mechanism are arranged in a unique geometric configuration which provides a sufficient range of motion for typical vacuum cluster tools. The geometric properties of the mechanism are further optimized for a given motion path of the robot. In addition to the basic symmetric single end-effector configuration, an asymmetric costeffective version of the mechanism is derived, and two dual-end-effector alternatives for improved throughput performance are described. In contrast to prior attempts to control angular orientation of the end-effector(s) of the conventional arms employed currently in vacuum cluster tools, all of the motors that drive the arm can be located at the stationary base of the robot with no need for joint actuators carried by the arm or complicated belt arrangements running through the arm. As a result, the motors do not contribute to the mass and inertia properties of the moving parts of the arm, no power and signal wires through the arm are necessary, the reliability and maintenance aspects of operation are improved, and the level of undesirable particle generation is reduced. This is particularly beneficial for high-throughput applications in vacuum and particlesensitive environments.


2008 ◽  
Vol 37 (3) ◽  
pp. 207-220 ◽  
Author(s):  
Makiko Sadakata ◽  
David Hoppe ◽  
Alex Brandmeyer ◽  
Renee Timmers ◽  
Peter Desain
Keyword(s):  

2018 ◽  
Vol 84 (867) ◽  
pp. 18-00229-18-00229
Author(s):  
Shigeyuki KOBAYASHI ◽  
Yoshitaka YAMASHITA ◽  
Takayuki USUDA ◽  
David P. STOTEN

2012 ◽  
Vol 6 ◽  
pp. 98-107 ◽  
Author(s):  
Amit Gupta ◽  
Vijay Kumar Sehrawat ◽  
Mamta Khosla

2021 ◽  
Author(s):  
Satoshi Miura ◽  
Kento Nakagawa ◽  
Kazumasa Hirooka ◽  
Yuya Matsumoto ◽  
Yumi Umesawa ◽  
...  

Abstract Sports-assisting technologies have been developed; however, most are to improve performances in individual sports such as ski, batting, and swimming. Few studies focused on team sports which require not only motor ability of individual players but also perceptual abilities to grasp positions of their own and others. In the present study, we aim to validate the feasibility of a visual feedback system for the improvement of space perception in relation to other persons that is necessary. Herein, the visual feedback system is composed of a flying drone that transmits the image to the participant’s smart glasses. With and without the system, the participant was able to see his/her own relative position in real time though the glass. Nine participants tried to position themselves on the line between two experimenters 30 m away from each other, which simulated the situation of a baseball cutoff man. As a result, the error distance between the participants’ position and the line significantly decreased when using the system than that without the system. Furthermore, after participants practiced the task with the system the error decreased compared to that before the practice. In conclusion, the real-time feedback system from the bird’s-eye view would work for improving the accuracy of space perception.


Sign in / Sign up

Export Citation Format

Share Document