Ice storage air-conditioning system design and evaluation for Taizhou electric power control center

Author(s):  
He Bo ◽  
Tang Yida ◽  
Liu Xiao ◽  
Cheng Weichong
2021 ◽  
Vol 2141 (1) ◽  
pp. 012010
Author(s):  
M L He ◽  
Y Q Hu ◽  
M M Zhang ◽  
Y X Wu ◽  
W J Zhang

Abstract The air conditioning system of ice storage and water storage has been applied in many practical projects. This paper introduces the air conditioning system form of Fuyang Electric Power Dispatching Building. The design condition of cold and heat sources and its transmission and distribution system is also introduced. In addition, this paper also collects and analyses the data of the chillers in actual operation. The results show that the system runs steadily and accords with the design conditions.


2013 ◽  
Vol 671-674 ◽  
pp. 2515-2519
Author(s):  
Xue Mei Wang ◽  
Zhen Hai Wang ◽  
Xing Long Wu

This project aims to study the optimal control model of the ice-storage system which is theoretically close to the optimal control and also applicable to actual engineering. Using Energy Plus, the energy consumption simulation software, and the simple solution method of optimal control, researchers can analyze and compare the annual operation costs of the ice-storage air-conditioning system of a project in Beijing under different control strategies. Researchers obtained the power rates of the air-conditioning system in the office building under the conditions of chiller-priority and optimal contro1 throughout the cooling season. Through analysis and comparison, they find that after the implementation of optimal control, the annually saved power bills mainly result from non-design conditions, especially in the transitional seasons.


Author(s):  
Xinwei Zhou ◽  
Junqi Yu ◽  
Wanhu Zhang ◽  
Anjun Zhao ◽  
Min Zhou

Reasonable distribution of cooling load between chiller and ice tank is the key to realize the economical and energy-saving operation of ice-storage air-conditioning (ISAC) system. A multi-objective optimization model based on improved firefly algorithm (IFA) was established in this study to fully exploit the energy-saving potential and economic benefit of the ISAC system. The proposed model took the partial load rate of each chiller and the cooling ratio of the ice tank as optimization variables, and the lowest energy consumption loss rate and the lowest operating cost of the ISAC system were calculated. Chaotic logic self-mapping was used to initialize population to avoid falling into local optimum, and Cauchy mutation was used to increase the population’s diversity to improve the algorithm’s global search ability. The experimental results show that compared with the operation strategy based on constant proportion, particle swarm optimization (PSO) algorithm, and firefly algorithm (FA), the optimal operation strategy based on IFA can achieve more significant energy-saving and economic benefits. Meanwhile, the convergence accuracy and stability of the algorithm are significantly improved. Practical application: The optimized operation strategy of the ice-storage air-conditioning system can reduce energy loss and operating costs. The traditional operation strategies have the problems of low optimization precision and poor optimization effect. Therefore, this study presents an optimal operation strategy based on IFA. The convergence accuracy and stability of the algorithm are increased after the algorithm is improved. The operation strategy can get the maximum energy-saving effect and economic benefit of the ISAC system.


Sign in / Sign up

Export Citation Format

Share Document