A multi-objective optimization operation strategy for ice-storage air-conditioning system based on improved firefly algorithm

Author(s):  
Xinwei Zhou ◽  
Junqi Yu ◽  
Wanhu Zhang ◽  
Anjun Zhao ◽  
Min Zhou

Reasonable distribution of cooling load between chiller and ice tank is the key to realize the economical and energy-saving operation of ice-storage air-conditioning (ISAC) system. A multi-objective optimization model based on improved firefly algorithm (IFA) was established in this study to fully exploit the energy-saving potential and economic benefit of the ISAC system. The proposed model took the partial load rate of each chiller and the cooling ratio of the ice tank as optimization variables, and the lowest energy consumption loss rate and the lowest operating cost of the ISAC system were calculated. Chaotic logic self-mapping was used to initialize population to avoid falling into local optimum, and Cauchy mutation was used to increase the population’s diversity to improve the algorithm’s global search ability. The experimental results show that compared with the operation strategy based on constant proportion, particle swarm optimization (PSO) algorithm, and firefly algorithm (FA), the optimal operation strategy based on IFA can achieve more significant energy-saving and economic benefits. Meanwhile, the convergence accuracy and stability of the algorithm are significantly improved. Practical application: The optimized operation strategy of the ice-storage air-conditioning system can reduce energy loss and operating costs. The traditional operation strategies have the problems of low optimization precision and poor optimization effect. Therefore, this study presents an optimal operation strategy based on IFA. The convergence accuracy and stability of the algorithm are increased after the algorithm is improved. The operation strategy can get the maximum energy-saving effect and economic benefit of the ISAC system.

2021 ◽  
Author(s):  
Mohamed Elhelw ◽  
Wael M. El-Maghlany ◽  
Mohamed Shawky Ismail ‎

Abstract This paper introduces novel modification for conventional air conditioning systems through utilizing a thermal ice storage system integrated with solar panels. Alexandria and Aswan, cities in Egypt, are chosen to represent two climates for hot-humid and hot-dry climates respectively. The governing equations for both heat and mass transfer are theoretically solved. Exergy analysis is performed for the proposed solar-ice thermal storage system via determining exergy destruction on ice and solar components as well as the total destruction based on transient analysis. This study was carried out on two common types of air conditioning systems, an air handling unit and fan coil unit. Results showed that, solar-ice storage system is more effective approach in hot-humid climate than hot-dry climate and more efficient with all-water air conditioning system than with all-air conditioning system. The maximum energy saving is 205.16 GJ having a percent of 27.5% in August for all water system in case of Alexandria city and 224.67 GJ with a percent of 25.38% in August for all-water system in case of Aswan city. All air system simulation showed maximum energy saving of 175.05 GJ with a percent of 18.13 % in case of August for Alexandria and 175.45 GJ having a percentage of 17.43% in case of Aswan in August. Moreover, the all-water system achieved a reduction in CO2 emissions by 467 tons/year in Aswan city and 390 tons/year in case of Alexandria city. While these reductions decrease to be 435 and 353 tons/year when the all-air system used for the same two cities.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1474 ◽  
Author(s):  
Leehter Yao ◽  
Jin-Hao Huang

A multi-objective optimization scheme is proposed to save energy for a data center air conditioning system (ACS). Since the air handling units (AHU) and chillers are the most energy consuming facilities, the proposed energy saving control scheme aims to maximize the saved energy for these two facilities. However, the rack intake air temperature tends to increase if the energy saving control scheme applied to AHU and chillers is conducted inappropriately. Both ACS energy consumption and rack intake air temperature stabilization are set as two objectives for multi-objective optimization. The non-dominated sorting genetic algorithm II (NSGA-II) is utilized to solve the multi-objective optimization problem. In order for the NSGA-II to evaluate fitness functions that are both the ACS total power consumption and AHU outlet cold air temperature deviations from a specified range, neural network models are utilized. Feedforward neural networks are utilized to learn the power consumption models for both chillers and AHUs as well as the AHU outlet cold air temperature based on the recorded data collected in the field. The effectiveness and efficiency of the proposed energy saving control scheme is verified through practical experiments conducted on a campus data center ACS.


2020 ◽  
Vol 42 (1) ◽  
pp. 62-81
Author(s):  
Yanhuan Ren ◽  
Junqi Yu ◽  
Anjun Zhao ◽  
Wenqiang Jing ◽  
Tong Ran ◽  
...  

Improving the operational efficiency of chillers and science-based planning the cooling load distribution between the chillers and ice tank are core issues to achieve low-cost and energy-saving operations of ice storage air-conditioning systems. In view of the problems existing in centralized control architecture applied in heating, ventilation, and air conditioning, a distributed multi-objective particle swarm optimization improved by differential evolution algorithm based on a decentralized control structure was proposed. The energy consumption, operating cost, and energy loss were taken as the objectives to solve the chiller’s hourly partial load ratio and the cooling ratio of ice tank. A large-scale shopping mall in Xi’an was used as a case study. The results show that the proposed algorithm was efficient and provided significantly higher energy-savings than the traditional control strategy and particle swarm optimization algorithm, which has the advantages of good convergence, high stability, strong robustness, and high accuracy. Practical application: The end equipment of the electromechanical system is the basic component through the building operation. Based on this characteristic, taken electromechanical equipment as the computing unit, this paper proposes a distributed multi-objective optimization control strategy. In order to fully explore the economic and energy-saving effect of ice storage system, the optimization algorithm solves the chillers operation status and the load distribution. The improved optimization algorithm ensures the diversity of particles, gains fast optimization speed and higher accuracy, and also provides a better economic and energy-saving operation strategy for ice storage air-conditioning projects.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


2018 ◽  
Vol 38 ◽  
pp. 04012
Author(s):  
Sai Feng Xu ◽  
Xing Lin Yang ◽  
Zou Ying Le

For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins’ dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.


2013 ◽  
Vol 671-674 ◽  
pp. 2515-2519
Author(s):  
Xue Mei Wang ◽  
Zhen Hai Wang ◽  
Xing Long Wu

This project aims to study the optimal control model of the ice-storage system which is theoretically close to the optimal control and also applicable to actual engineering. Using Energy Plus, the energy consumption simulation software, and the simple solution method of optimal control, researchers can analyze and compare the annual operation costs of the ice-storage air-conditioning system of a project in Beijing under different control strategies. Researchers obtained the power rates of the air-conditioning system in the office building under the conditions of chiller-priority and optimal contro1 throughout the cooling season. Through analysis and comparison, they find that after the implementation of optimal control, the annually saved power bills mainly result from non-design conditions, especially in the transitional seasons.


Sign in / Sign up

Export Citation Format

Share Document