A supply chain inventory model with imperfect quality and stochastic demand

Author(s):  
Irfan Hilmi Hamdani ◽  
Wakhid Ahmad Jauhari ◽  
Alifah Khairina
Author(s):  
Dipak Barman ◽  
Gour Chandra Mahata

In this paper, we develop an integrated two-echelon supply chain inventory model with a single-manufacturer and multi-retailers in which each retailer’s demand is dependent on selling price of the product. The manufacturer produces a single product and dispatched the order quantities of the retailers in some equal batches. The production process is imperfect and produces imperfect quality of products with a defective percentage which is random in nature and follows binomial distribution. Inspection process is performed by the retailers to classify the defective items in each lot delivered from the manufacturer. The defective items that were found by the retailer will be returned to the manufacturer at the next delivery. Lead time is random and it follows an exponential distribution. We also assume that shortages are allowed and are completely backlogged at each retailer’s end. A closed form solution to maximize the expected average profit for both the centralized and the decentralized scenarios are obtained. The developed models are illustrated with the help of some numerical examples using stochastic search genetic algorithm (GA). It is found that integration of the supply chain players results an impressive increment in the profit of the whole supply chain. Sensitivity analysis is also performed to explore the impacts of key-model parameters on the expected average profit of the supply chain.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 495
Author(s):  
Umakanta Mishra ◽  
Abu Hashan Md Mashud ◽  
Ming-Lang Tseng ◽  
Jei-Zheng Wu

This study investigated how greenhouse managers should invest in preservation and green technologies and introduce trade credit to increase their profits. We propose a supply chain inventory model with controllable deterioration and emission rates under payment schemes for shortage and surplus, where demand depends on price and trade credit. Carbon emissions and deterioration are factors affecting global warming, and many greenhouse managers have focused on reducing carbon emissions. Carbon caps and tax-based incentives have been used in many greenhouses to achieve such reduction. Because of the importance of reducing carbon emissions for developing a green supply chain, various studies have investigated how firms deal with carbon emission constraints. In this continuation, we have used green technology to curb the excessive emissions from the environment or make it clean from CO2. In a seller–buyer relationship, the seller can offer a trade credit period to the buyer to manage stock and stimulate demand. Deterioration may become a challenge for most firms as they are under time constraints control, and preservation technology could help. This study proposes three novel inventory strategies for a sustainable supply chain (full backorder, partial backorder, and no backorder), linking all these important issues. The solution optimizes total annual profit for inventory shortage or surplus. We conducted a numerical study with three examples to evaluate the model’s authenticity and effectiveness and demonstrate the solution technique. The deterioration and emission rates can be included in a trade credit policy to increase greenhouse profits. The results suggest that greenhouse managers could apply the proposed model to manage real-world situations.


Sign in / Sign up

Export Citation Format

Share Document