Traffic Speed Prediction Based on Spatial-Temporal Fusion Graph Neural Network

Author(s):  
Zhongbo Liu ◽  
Mingkui Li ◽  
Jianli Zhao ◽  
Qiuxia Sun ◽  
Futong Zhuo
Author(s):  
Ruimin Ke ◽  
Wan Li ◽  
Zhiyong Cui ◽  
Yinhai Wang

Traffic speed prediction is a critically important component of intelligent transportation systems. Recently, with the rapid development of deep learning and transportation data science, a growing body of new traffic speed prediction models have been designed that achieved high accuracy and large-scale prediction. However, existing studies have two major limitations. First, they predict aggregated traffic speed rather than lane-level traffic speed; second, most studies ignore the impact of other traffic flow parameters in speed prediction. To address these issues, the authors propose a two-stream multi-channel convolutional neural network (TM-CNN) model for multi-lane traffic speed prediction considering traffic volume impact. In this model, the authors first introduce a new data conversion method that converts raw traffic speed data and volume data into spatial–temporal multi-channel matrices. Then the authors carefully design a two-stream deep neural network to effectively learn the features and correlations between individual lanes, in the spatial–temporal dimensions, and between speed and volume. Accordingly, a new loss function that considers the volume impact in speed prediction is developed. A case study using 1-year data validates the TM-CNN model and demonstrates its superiority. This paper contributes to two research areas: (1) traffic speed prediction, and (2) multi-lane traffic flow study.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xin Fu ◽  
Wei Luo ◽  
Chengyao Xu ◽  
Xiaoxuan Zhao

As a core component of the urban intelligent transportation system, traffic prediction is significant for urban traffic control and guidance. However, it is challenging to achieve accurate traffic prediction due to the complex spatiotemporal correlation of traffic data. A road section speed prediction model based on wavelet transform and neural network is, therefore, proposed in this article to improve traffic prediction methods. The wavelet transform is used to decompose the original traffic speed data, and then the coefficients obtained after the decomposition are used to reconstruct the high-frequency random sequences and the low-frequency trend sequence. Secondly, a GRU neural network is constructed to learn the trend of low-frequency sequence. The spatiotemporal correlation between input data is extracted by adjusting the input of the model. Meanwhile, an ARMA model is used to fit unstable random fluctuations of high-frequency sequences. Last of all, the prediction results of the two models are added together to obtain the final prediction result. The proposed prediction model is validated by using road section speed data based on the floating car data collected in Ningbo. The results show that the proposed model has high accuracy and robustness.


Sign in / Sign up

Export Citation Format

Share Document