scholarly journals Two-Stream Multi-Channel Convolutional Neural Network for Multi-Lane Traffic Speed Prediction Considering Traffic Volume Impact

Author(s):  
Ruimin Ke ◽  
Wan Li ◽  
Zhiyong Cui ◽  
Yinhai Wang

Traffic speed prediction is a critically important component of intelligent transportation systems. Recently, with the rapid development of deep learning and transportation data science, a growing body of new traffic speed prediction models have been designed that achieved high accuracy and large-scale prediction. However, existing studies have two major limitations. First, they predict aggregated traffic speed rather than lane-level traffic speed; second, most studies ignore the impact of other traffic flow parameters in speed prediction. To address these issues, the authors propose a two-stream multi-channel convolutional neural network (TM-CNN) model for multi-lane traffic speed prediction considering traffic volume impact. In this model, the authors first introduce a new data conversion method that converts raw traffic speed data and volume data into spatial–temporal multi-channel matrices. Then the authors carefully design a two-stream deep neural network to effectively learn the features and correlations between individual lanes, in the spatial–temporal dimensions, and between speed and volume. Accordingly, a new loss function that considers the volume impact in speed prediction is developed. A case study using 1-year data validates the TM-CNN model and demonstrates its superiority. This paper contributes to two research areas: (1) traffic speed prediction, and (2) multi-lane traffic flow study.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1772 ◽  
Author(s):  
Kumar Shivam ◽  
Jong-Chyuan Tzou ◽  
Shang-Chen Wu

Wind energy is the most used renewable energy worldwide second only to hydropower. However, the stochastic nature of wind speed makes it harder for wind farms to manage the future power production and maintenance schedules efficiently. Many wind speed prediction models exist that focus on advance neural networks and/or preprocessing techniques to improve the accuracy. Since most of these models require a large amount of historic wind data and are validated using the data split method, the application to real-world scenarios cannot be determined. In this paper, we present a multi-step univariate prediction model for wind speed data inspired by the residual U-net architecture of the convolutional neural network (CNN). We propose a residual dilated causal convolutional neural network (Res-DCCNN) with nonlinear attention for multi-step-ahead wind speed forecasting. Our model can outperform long-term short-term memory networks (LSTM), gated recurrent units (GRU), and Res-DCCNN using sliding window validation techniques for 50-step-ahead wind speed prediction. We tested the performance of the proposed model on six real-world wind speed datasets with different probability distributions to confirm its effectiveness, and using several error metrics, we demonstrated that our proposed model was robust, precise, and applicable to real-world cases.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sangmin Jeon ◽  
Kyungmin Clara Lee

Abstract Objective The rapid development of artificial intelligence technologies for medical imaging has recently enabled automatic identification of anatomical landmarks on radiographs. The purpose of this study was to compare the results of an automatic cephalometric analysis using convolutional neural network with those obtained by a conventional cephalometric approach. Material and methods Cephalometric measurements of lateral cephalograms from 35 patients were obtained using an automatic program and a conventional program. Fifteen skeletal cephalometric measurements, nine dental cephalometric measurements, and two soft tissue cephalometric measurements obtained by the two methods were compared using paired t test and Bland-Altman plots. Results A comparison between the measurements from the automatic and conventional cephalometric analyses in terms of the paired t test confirmed that the saddle angle, linear measurements of maxillary incisor to NA line, and mandibular incisor to NB line showed statistically significant differences. All measurements were within the limits of agreement based on the Bland-Altman plots. The widths of limits of agreement were wider in dental measurements than those in the skeletal measurements. Conclusions Automatic cephalometric analyses based on convolutional neural network may offer clinically acceptable diagnostic performance. Careful consideration and additional manual adjustment are needed for dental measurements regarding tooth structures for higher accuracy and better performance.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 816
Author(s):  
Pingping Liu ◽  
Xiaokang Yang ◽  
Baixin Jin ◽  
Qiuzhan Zhou

Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), and it is necessary to diagnose DR in the early stages of treatment. With the rapid development of convolutional neural networks in the field of image processing, deep learning methods have achieved great success in the field of medical image processing. Various medical lesion detection systems have been proposed to detect fundus lesions. At present, in the image classification process of diabetic retinopathy, the fine-grained properties of the diseased image are ignored and most of the retinopathy image data sets have serious uneven distribution problems, which limits the ability of the network to predict the classification of lesions to a large extent. We propose a new non-homologous bilinear pooling convolutional neural network model and combine it with the attention mechanism to further improve the network’s ability to extract specific features of the image. The experimental results show that, compared with the most popular fundus image classification models, the network model we proposed can greatly improve the prediction accuracy of the network while maintaining computational efficiency.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Yu ◽  
Yirui Wang ◽  
Shangce Gao ◽  
Zheng Tang

With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.


Sign in / Sign up

Export Citation Format

Share Document