Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots

Author(s):  
Kanako Miura ◽  
Mitsuharu Morisawa ◽  
Shin'ichiro Nakaoka ◽  
Fumio Kanehiro ◽  
Kensuke Harada ◽  
...  
2010 ◽  
Vol 07 (01) ◽  
pp. 127-156 ◽  
Author(s):  
JUNG-YUP KIM ◽  
YOUNG-SEOG KIM

This paper proposes an efficient walking pattern mapping algorithm from motion capture data onto biped humanoid robots. Currently, the technology known as human motion capture is widely utilized to generate various humanlike motions in many applications, including robotics. An important thing is that several difficulties are associated with motion capture data. These include a data offset issue, noise, and drift problems due to measurement errors caused by imperfect camera calibration, and marker position. If a biped robot uses motion capture data without suitable post-processes, the walking motion of the robot will differ from an actual walking motion, and the Zero Moment Point (ZMP) will be asymmetrical and noisy, leading to unstable walking. A further difficulty exists in the walking pattern mapping process due to the different joint numbers, link sizes, and weights between a human and a robot. Although walking pattern mapping is suitable after addressing the above difficulties, a slip problem between the feet and the ground can continue to cause problems. To solve these difficulties efficiently, a Fourier fitting method is proposed in this research. Improvements of walking pattern and the ZMP trajectory are confirmed using the proposed method. Furthermore, a geometric mapping method is introduced to generate walking patterns for various biped robots while maintaining a degree of similarity to humans. By applying a no-slip constraint to the feet and modifying the joint angles through inverse kinematics, the slip problem is also solved. The effectiveness of the proposed algorithm is verified through computer simulations of two different biped robots that have different sizes, weights, walking cycles, and step lengths.


2011 ◽  
Vol 29 (supplement) ◽  
pp. 283-304 ◽  
Author(s):  
Timothy R. Brick ◽  
Steven M. Boker

Among the qualities that distinguish dance from other types of human behavior and interaction are the creation and breaking of synchrony and symmetry. The combination of symmetry and synchrony can provide complex interactions. For example, two dancers might make very different movements, slowing each time the other sped up: a mirror symmetry of velocity. Examining patterns of synchrony and symmetry can provide insight into both the artistic nature of the dance, and the nature of the perceptions and responses of the dancers. However, such complex symmetries are often difficult to quantify. This paper presents three methods – Generalized Local Linear Approximation, Time-lagged Autocorrelation, and Windowed Cross-correlation – for the exploration of symmetry and synchrony in motion-capture data as is it applied to dance and illustrate these with examples from a study of free-form dance. Combined, these techniques provide powerful tools for the examination of the structure of symmetry and synchrony in dance.


2015 ◽  
Vol 51 ◽  
pp. 1-7 ◽  
Author(s):  
Irene Cheng ◽  
Amirhossein Firouzmanesh ◽  
Anup Basu

2017 ◽  
Vol 64 (2) ◽  
pp. 1589-1599 ◽  
Author(s):  
Guiyu Xia ◽  
Huaijiang Sun ◽  
Xiaoqing Niu ◽  
Guoqing Zhang ◽  
Lei Feng

Sign in / Sign up

Export Citation Format

Share Document