Development of Fault Location for Distributed Parameter Transmission Lines of a Power System

Author(s):  
Duy C. Huynh ◽  
Thanh H. Truong ◽  
Anh V. Truong ◽  
Matthew W. Dunnigan
2013 ◽  
Vol 14 (3) ◽  
pp. 265-274
Author(s):  
Wanjing Xiu ◽  
Yuan Liao

Abstract This article presents a novel fault location algorithm for parallel transmission lines for scenarios where only limited synchronized voltage and current measurements are available. Existing methods usually request measurements at the faulted line to be available. However, this may not always be the case due to the limited number of recording devices placed in a power system. The proposed method makes the most of available measurements and does not require the measurements to be captured from the faulted line. The pre-fault and during-fault bus impedance matrices for the positive-sequence network are derived. Synchronized bus voltages and branch currents are then expressed as a function of fault location and line parameters. As a result, fault location can be estimated using the obtained measurements. The distributed parameter line model is adopted to fully consider the shunt capacitances of the line. To eliminate the influence of bad measurements, optimal estimation theory is adopted for enhanced accuracy of the fault location estimate. Simulation studies have been carried out based on a 27-bus power system, and encouraging results have been achieved.


2014 ◽  
Vol 15 (5) ◽  
pp. 449-456
Author(s):  
Wanjing Xiu ◽  
Yuan Liao

Abstract This paper presents a novel fault location method for transmission lines. The proposed method extends an existing method to locate faults by employing voltage and current measurements at one bus, which can be the bus of the faulted line or be far away from the faulted line. The method is applicable if a loop exists that encloses the faulted line, and the bus, of which the voltage is used, and the branch, of which the current is used. The during-fault positive-sequence bus impedance matrix is derived. Then superimposed voltages and currents due to the fault are expressed as a function of fault location and related transfer and driving point impedances. Consequently, the fault location can be evaluated using the obtained measurements. The distributed parameter line model is adopted to consider the shunt capacitances of the line. The proposed method is independent of fault resistance and fault type. Simulation studies have been carried out based on a 27-bus power system, and promising results have been achieved.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 550
Author(s):  
Michał Tadeusiewicz ◽  
Stanisław Hałgas

Parametric fault diagnosis of analog very high-frequency circuits consisting of a distributed parameter transmission line (DPTL) terminated at both ends by lumped one-ports is considered in this paper. The one-ports may include linear passive and active components. The DPTL is a uniform two-conductor line immersed in a homogenous medium, specified by the per-unit-length (p-u-l) parameters. The proposed method encompasses all aspects of parametric fault diagnosis: detection of the faulty area, location of the fault inside this area, and estimation of its value. It is assumed that only one fault can occur in the circuit. The diagnostic method is based on a measurement test arranged in the AC state. Different approaches are proposed depending on whether the faulty is DPTL or one of the one-ports. An iterative method is modified to solve various systems of nonlinear equations that arise in the course of the diagnostic process. The diagnostic method can be extended to a broader class of circuits containing several transmission lines. Three numerical examples reveal that the proposed diagnostic method is fast and gives quite accurate findings.


2013 ◽  
Vol 634-638 ◽  
pp. 3925-3929
Author(s):  
Hong Yu Shen ◽  
Wen Jun Zhang ◽  
Yu Bo Duan ◽  
Jian Jun Xu

Existing two-terminal fault location method can not be directly applied to the three-terminal transmission lines, this paper presents a new PMU-based fault location algorithm for three-terminal transmission lines. The development of the algorithm takes advantage of PMU measurement data synchronization, uses distributed parameter line model, first of all judging the fault zone after a failure, uses Thevenin's Theorem to merge the non-slip fault, so the three-terminal system is simplified the two-terminal system, Then we can use the two-terminal fault location principle of fault location. Through MATLAB simulation shows the correctness of the algorithm.


2011 ◽  
Vol 383-390 ◽  
pp. 4377-4384
Author(s):  
Zhou Ma ◽  
Xiao Ning Li ◽  
Xiao Ming Zhang

A new practical fault location algorithm using two-terminal electrical quantities is presented in this article, which takes into account the distributed parameter line model. The analytical expression of algorithm derives from Three-Phase decoupling. First, an analytical synchronization of the unsynchronized measurements is performed with use of the determined synchronization operator and the non-synchronizing angle is calculated with the two-terminal pre-fault electrical quantities. Then, the real-time transmission line parameters are calculated using two-terminal non-synchronized electrical quantities and the non-synchronizing angle. The algorithm overcomes the drawbacks of the traditional fault location algorithms, which does not exist the pseudo-root problem. Besides, it has the advantages of simple, practical, litter computation, no need to search and iterative and robustness. The algorithm has not influenced by fault types, the transition resistance and other factors. At last the developed fault location algorithm is tested using signals of ATP-EMTP versatile simulations of faults on a transmission line.


Sign in / Sign up

Export Citation Format

Share Document