Wide bandwidth stagnation temperature measurements in vortical flows behind turbine vanes

Author(s):  
S.I. Hogg ◽  
W.E. Carscallen ◽  
J.P. Gostelow ◽  
D.R. Buttsworth ◽  
T.V. Jones
2019 ◽  
Vol 3 (2) ◽  
pp. 6
Author(s):  
Hartmut Borchert ◽  
Stefan Brieschenk ◽  
Berthold Sauerwein

2018 ◽  
Vol 32 (1) ◽  
pp. 226-236 ◽  
Author(s):  
Claudio Selcan ◽  
Tobias Sander ◽  
Philipp Altenhöfer ◽  
Fabian Koroll ◽  
Christian Mundt

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Clare Bonham ◽  
Mark Brend ◽  
Adrian Spencer ◽  
Katsu Tanimizu ◽  
Dylan Wise

Steady-state stagnation temperature probes are used during gas turbine engine testing as a means of characterizing turbomachinery component performance. The probes are located in the high-velocity gas-path, where temperature recovery and heat transfer effects cause a shortfall between the measured temperature and the flow stagnation temperature. To improve accuracy, the measurement shortfall is corrected post-test using data acquired at representative Mach numbers in a steady aerodynamic calibration facility. However, probes installed in engines are typically subject to unsteady flows, which are characterized by periodic variations in Mach number and temperature caused by the wakes shed from upstream blades. The present work examines the impact of this periodic unsteadiness on stagnation temperature measurements by translating probes between jets with dissimilar Mach numbers. For conventional Kiel probes in unsteady flows, a greater temperature measurement shortfall is recorded compared to equivalent steady flows, which is related to greater conductive heat loss from the temperature sensor. This result is important for the application of post-test corrections, since an incorrect value will be applied using steady calibration data. A new probe design with low susceptibility to conductive heat losses is therefore developed, which is shown to deliver the same performance in both steady and unsteady flows. Measurements from this device can successfully be corrected using steady aerodynamic calibration data, resulting in improved stagnation temperature accuracy compared to conventional probe designs. This is essential for resolving in-engine component performance to better than ±0.5% across all component pressure ratios.


Author(s):  
Michela Massini ◽  
Robert J. Miller ◽  
Howard P. Hodson ◽  
Nick Collings

A new probe has been developed to measure the time averaged stagnation temperature, stagnation pressure and gas composition. This probe can be used in the high temperature regions of gas turbines, including downstream of the combustor and in the first stages of the high pressure turbines, as well as in other environments. The principal benefits of the new probe are that it overcomes the limitations of the standard methods that are used to measure temperature in high temperature environments and that it replaces three separate probes, for the three quantities mentioned above, with one single probe. A novel method of measuring temperature is used, which improves upon the accuracy of thermocouples and increases the temperature operating range. The probe consists of a choked nozzle placed in the hot flow at the point of interest. The working principle is based on the theory that for a choked nozzle, there is a fixed relationship between the stagnation quantities, the gas characteristics and the mass flow rate through the nozzle. The probe has an aspirated phase, where the gas composition and the mass flow rate are measured and a stagnated phase, where the stagnation pressure is measured. The stagnation temperature is determined from the above quantities. The operating principle has been proven valid through laboratory and rig tests. The probe has been successfully tested in a Rolls-Royce Viper engine up to 1000K and 2 bar and in a combustor rig up to 1800K and 4 bars. Measurements of stagnation temperature, stagnation pressure and gas compositions for these tests are presented in the paper and are compared with reference measurements. The accuracy of stagnation pressure and gas composition measurements is equal to the accuracy achievable with techniques that are commonly used in gas turbines. The estimated achievable accuracy of the aspirated probe in terms of temperature measurements is ±0.6%, i.e. ±10K at 1800K, which improves upon the accuracy of temperature measurements performed with standard thermocouples at the same temperatures, the uncertainty of which could be as high as ±2%.


2018 ◽  
Vol 168 ◽  
pp. 01002
Author(s):  
Kamil Sedlák ◽  
Lenka Fialová

The article deals with a brief description of methods of temperature measurements in a flowing water steam. Attention is paid to the measurement of pseudo static temperature by a single sealed thermocouple entering the flowing liquid through the flown-by wall. Then three types of probes for stagnation temperature measurement are shown, whose properties were tested using CFD calculations. The aim was to design a probe of stagnation parameters of described properties which can be used for measuring flow parameters in a real steam turbine. An important factor influencing the construction is not only the safe manipulation of the probe when inserting and removing it from the machine in operation, but also the possibility to traverse the probe along the blade length.


Sign in / Sign up

Export Citation Format

Share Document