flowing liquid
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 112)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Xu Meng ◽  
Z H Wang ◽  
Dengke Zhang

Abstract In the future application of nuclear fusion, the liquid metal flows are considered to be an attractive option of the first wall of the Tokamak which can effectively remove impurities and improve the confinement of plasma. Moreover, the flowing liquid metal can solve the problem of the corrosion of the solid first wall due to high thermal load and particle discharge. In the magnetic confinement fusion reactor, the liquid metal flow experiences strong magnetic and electric, fields from plasma. In the present paper, an experiment has been conducted to explore the influence of electric and magnetic fields on liquid metal flow. The direction of electric current is perpendicular to that of the magnetic field direction, and thus the Lorentz force is upward or downward. A laser profilometer (LP) based on the laser triangulation technique is used to measure the thickness of the liquid film of Galinstan. The phenomenon of the liquid column from the free surface is observed by the high-speed camera under various flow rates, intensities of magnetic field and electric field. Under a constant external magnetic field, the liquid column appears at the position of the incident current once the external current exceeds a critical value, which is inversely proportional to the magnetic field. The thickness of the flowing liquid film increases with the intensities of magnetic field, electric field, and Reynolds number. The thickness of the liquid film at the incident current position reaches a maximum value when the force is upward. The distribution of liquid metal in the channel presents a parabolic shape with high central and low marginal. Additionally, the splashing, i.e., the detachment of liquid metal is not observed in the present experiment, which suggests a higher critical current for splashing to occur.


Author(s):  
Stefan Schulze ◽  
Heather Schiller ◽  
Jordan Solomonic ◽  
Orkan Telhan ◽  
Kyle Costa ◽  
...  

Most microorganisms exist in biofilms, which comprise aggregates of cells surrounded by an extracellular matrix that provides protection from external stresses. Based on the conditions under which they form, biofilm structures vary in significant ways. For instance, biofilms that develop when microbes are incubated under static conditions differ from those formed when microbes encounter the shear forces of a flowing liquid. Moreover, biofilms develop dynamically over time. Here, we describe a cost-effective, 3D-printed coverslip holder that facilitates surface adhesion assays under a broad range of standing and shaking culture conditions. This multi-panel adhesion (mPAD) mount further allows cultures to be sampled at multiple time points, ensuring consistency and comparability between samples and enabling analyses of the dynamics of biofilm formation. As a proof of principle, using the mPAD mount for shaking, oxic cultures, we confirm previous flow chamber experiments showing that Pseudomonas aeruginosa wild type and a phenazine deletion mutant (Δ phz ) form biofilms with similar structure but reduced density in the mutant strain. Extending this analysis to anoxic conditions, we reveal that microcolony and biofilm formation can only be observed under shaking conditions and are decreased in the Δ phz mutant compared to wild-type cultures, indicating that phenazines are crucial for the formation of biofilms if oxygen as an electron acceptor is unavailable. Furthermore, while the model archaeon Haloferax volcanii does not require archaella for surface attachment under static conditions, we demonstrate that H. volcanii mutants that lack archaella are impaired in early stages of biofilm formation under shaking conditions. Importance: Due to the versatility of the mPAD mount, we anticipate that it will aid the analysis of biofilm formation in a broad range of bacteria and archaea. Thereby, it contributes to answering critical biological questions about the regulatory and structural components of biofilm formation and understanding this process in a wide array of environmental, biotechnological, and medical contexts.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012135
Author(s):  
V I Svyatkina ◽  
V V Davydov ◽  
V Yu Rud

Abstract A new design of a differential flow refractometer has been developed to monitor the condition of flowing media in a pipeline. A new method of refractive index measurement has been implemented, taking into account the specifics of flowing and closed cuvette arrangement, as well as the angles of incidence of laser radiation on their walls. The effect of changes in the optical density in the flowing liquid on the refractive index measurement result is determined. The results of experimental investigations of different media are presented.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012145
Author(s):  
F A Isakov ◽  
V V Davydov ◽  
V Yu Rud

Abstract The article substantiates the need to use a flow-through refractometer to control the state of a flowing liquid during scientific research, when automating a technological process, etc. The main negative factors that affect an increase in the measurement error of the refractive index n of a flowing liquid are determined. It was found that one of these factors is the formation of a thin film (plaque) on the upper face of the prism, which is in contact with the medium under study. The study of the influence of this film on the measurement error has been carried out. A method has been developed to eliminate plaque from the upper face of the prism during the operation of the refractometer. The results of experimental studies are presented.


2021 ◽  
Vol 73 (11) ◽  
pp. 58-59
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201609, “Cellulose Nanocrystal Switchable Gel for Improving CO2 Sweep Efficiency in Enhanced Oil Recovery and Gas Storage,” by Ali Telmadarreie, University of Calgary and Cnergreen; Christopher Johnsen, University of Calgary; and Steven Bryant, University of Calgary and Cnergreen, prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, 5–7 October. The paper has not been peer reviewed. The entanglement of biopolymers is a well-known phenomenon that, when controlled, can result in a smart fluid with strong gelation properties. The authors write that, when a suitable salt is incorporated into the cellulose nanocrystal (CNC), the fluids undergo gelation upon contact with bulk-phase carbon dioxide (CO2) but remain a flowing liquid otherwise. In this study, this composition-selective trigger was applied to improve sweep efficiency in CO2 enhanced oil recovery (EOR) and sequestration. Introduction Hydrogels are hydrophilic structures that swell when hydrated and have various applications in industry. Hydrogels are of interest in EOR because of their ability to respond to stimuli such as pH, temperature, light, and ionic strength. CNCs are nanoparticles derived from cellulose, one of the more sustainable natural resources available. CNC hydrogels could have specific applications as a solution to media het-erogeneity and poor gas-sweep efficiency. The hydrogels can be tuned to set over time, allowing the intentional placement of gels into already-swept areas of a reservoir. CNC hydrogels are unique in that they can be formed when contacted with CO2 and broken by the application of nitrogen (N2) gas. The pH of the solution will be increased as the nitrogen partitions across the gel, reversing the CO2 reaction. This gives the gel-forming solution the added benefit of being transmittable throughout a reservoir. Material and Procedure Spray-dried CNCs with an average length of 100–200 nm and a width of 15 nm were used. Imidazole was used as the salt mixed with water and CNC suspension to create a pH-triggered gel system. CO2 gas and N2 gas were used as received. Mineral oil with a viscosity of approximately 20 cp was used at the oil phase. Solution preparation, and the process for gel strength in bulk testing, are provided in the complete paper. All tests were performed at a pressure of 400 psi and an ambient temperature of 21°C. Two sets of flow experiments were performed. The first included flow in a single sandpack saturated with water to investigate the in-situ gelation and reversibility of the gel. The second set used a dual-sandpack system. The shorter sandpack with higher permeability was saturated with water to create a path of less resistance compared with the longer sandpack with lower permeability saturated with viscous oil. Further details of these experiments are provided in the complete paper.


Author(s):  
M. A. Mohammed ◽  
J. F. Baiyeri ◽  
T. O. Ogunbayo ◽  
O. A. Esan

The investigation of dissipative heat and species diffusion of a conducting liquid under the combined influence of buoyancy forces in a moving plate is examined in the existence of magnetic field. The flowing liquid heat conductivity and viscosity are taken to be linearly varied as a temperature function. The governing derivative equations of the problem are changed to anon-linear coupled ordinary derivative equations by applying similarity quantities. The dimensionless model is solved using shooting technique along with the Runge-Kutta method. The outcomes for the flow wall friction, heat gradient and species wall gradient are offered in table and qualitatively explained. The study revealed that the Newtonian fluid viscosity can be enhanced by increasing the fluid flow medium porosity and the magnetic field strength. Hence, the study will improve the industrial usage of Newtonian working fluid.


2021 ◽  
Author(s):  
Stefan Schulze ◽  
Heather Schiller ◽  
Jordan Solomonic ◽  
Orkan Telhan ◽  
Kyle Costa ◽  
...  

AbstractMost microorganisms exist in biofilms, which comprise aggregates of cells surrounded by an extracellular matrix that provides protection from external stresses. Based on the conditions under which they form, biofilm structures vary in significant ways. For instance, biofilms that develop when microbes are incubated under static conditions differ from those formed when microbes encounter the shear forces of a flowing liquid. Moreover, biofilms develop dynamically over time. Here, we describe a cost-effective, 3D-printed coverslip holder that facilitates surface adhesion assays under a broad range of standing and shaking culture conditions. This multi-panel adhesion (mPAD) mount further allows cultures to be sampled at multiple time points, ensuring consistency and comparability between samples and enabling analyses of the dynamics of biofilm formation. As a proof of principle, using the mPAD mount for shaking, oxic cultures, we confirm previous flow chamber experiments showing that Pseudomonas aeruginosa wild type and a phenazine deletion mutant (Δphz) form similar biofilms. Extending this analysis to anoxic conditions, we reveal that microcolony and biofilm formation can only be observed under shaking conditions and are decreased in the Δphz mutant compared to wild-type cultures, indicating that phenazines are crucial for the formation of biofilms if oxygen as an electron acceptor is not available. Furthermore, while the model archaeon Haloferax volcanii does not require archaella for attachment to surfaces under static conditions, we demonstrate that H. volcanii mutants that lack archaella are negatively affected in their early stages of biofilm formation under shaking conditions.ImportanceDue to the versatility of the mPAD mount, we anticipate that it will aid the analysis of biofilm formation in a broad range of bacteria and archaea. Thereby, it contributes to answering critical biological questions about the regulatory and structural components of biofilm formation and understanding this process in a wide array of environmental, biotechnological, and medical contexts.


2021 ◽  
Vol 118 (35) ◽  
pp. e2108361118
Author(s):  
Qing Zhang ◽  
Rui Zhang ◽  
Baoliang Ge ◽  
Zahid Yaqoob ◽  
Peter T. C. So ◽  
...  

Lyotropic chromonic liquid crystals are water-based materials composed of self-assembled cylindrical aggregates. Their behavior under flow is poorly understood, and quantitatively resolving the optical retardance of the flowing liquid crystal has so far been limited by the imaging speed of current polarization-resolved imaging techniques. Here, we employ a single-shot quantitative polarization imaging method, termed polarized shearing interference microscopy, to quantify the spatial distribution and the dynamics of the structures emerging in nematic disodium cromoglycate solutions in a microfluidic channel. We show that pure-twist disclination loops nucleate in the bulk flow over a range of shear rates. These loops are elongated in the flow direction and exhibit a constant aspect ratio that is governed by the nonnegligible splay-bend anisotropy at the loop boundary. The size of the loops is set by the balance between nucleation forces and annihilation forces acting on the disclination. The fluctuations of the pure-twist disclination loops reflect the tumbling character of nematic disodium cromoglycate. Our study, including experiment, simulation, and scaling analysis, provides a comprehensive understanding of the structure and dynamics of pressure-driven lyotropic chromonic liquid crystals and might open new routes for using these materials to control assembly and flow of biological systems or particles in microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document