Three-Dimensional Point Cloud Feature Change Detection Algorithm of Open-pit Mine Based on Discrete Curvature Analysis

Author(s):  
Huan Yang ◽  
Yangming Guo ◽  
Xiaodong Wang ◽  
Jiayu Song ◽  
Chen Sun ◽  
...  
Author(s):  
A. W. Lyda ◽  
X. Zhang ◽  
C. L. Glennie ◽  
K. Hudnut ◽  
B. A. Brooks

Remote sensing via LiDAR (Light Detection And Ranging) has proven extremely useful in both Earth science and hazard related studies. Surveys taken before and after an earthquake for example, can provide decimeter-level, 3D near-field estimates of land deformation that offer better spatial coverage of the near field rupture zone than other geodetic methods (e.g., InSAR, GNSS, or alignment array). In this study, we compare and contrast estimates of deformation obtained from different pre and post-event airborne laser scanning (ALS) data sets of the 2014 South Napa Earthquake using two change detection algorithms, Iterative Control Point (ICP) and Particle Image Velocimetry (PIV). The ICP algorithm is a closest point based registration algorithm that can iteratively acquire three dimensional deformations from airborne LiDAR data sets. By employing a newly proposed partition scheme, “moving window,” to handle the large spatial scale point cloud over the earthquake rupture area, the ICP process applies a rigid registration of data sets within an overlapped window to enhance the change detection results of the local, spatially varying surface deformation near-fault. The other algorithm, PIV, is a well-established, two dimensional image co-registration and correlation technique developed in fluid mechanics research and later applied to geotechnical studies. Adapted here for an earthquake with little vertical movement, the 3D point cloud is interpolated into a 2D DTM image and horizontal deformation is determined by assessing the cross-correlation of interrogation areas within the images to find the most likely deformation between two areas. Both the PIV process and the ICP algorithm are further benefited by a presented, novel use of urban geodetic markers. Analogous to the persistent scatterer technique employed with differential radar observations, this new LiDAR application exploits a classified point cloud dataset to assist the change detection algorithms. Ground deformation results and statistics from these techniques are presented and discussed here with supplementary analyses of the differences between techniques and the effects of temporal spacing between LiDAR datasets. Results show that both change detection methods provide consistent near field deformation comparable to field observed offsets. The deformation can vary in quality but estimated standard deviations are always below thirty one centimeters. This variation in quality differentiates the methods and proves that factors such as geodetic markers and temporal spacing play major roles in the outcomes of ALS change detection surveys.


Author(s):  
M. Shahbazi ◽  
G. Sohn ◽  
J. Théau ◽  
P. Ménard

Along with the advancement of unmanned aerial vehicles (UAVs), improvement of high-resolution cameras and development of vision-based mapping techniques, unmanned aerial imagery has become a matter of remarkable interest among researchers and industries. These images have the potential to provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modelling. In this paper, we present our theoretical and technical experiments regarding the development, implementation and evaluation of a UAV-based photogrammetric system for precise 3D modelling. This system was preliminarily evaluated for the application of gravel-pit surveying. The hardware of the system includes an electric powered helicopter, a 16-megapixels visible camera and inertial navigation system. The software of the system consists of the in-house programs built for sensor calibration, platform calibration, system integration and flight planning. It also includes the algorithms developed for structure from motion (SfM) computation including sparse matching, motion estimation, bundle adjustment and dense matching.


2012 ◽  
Vol 11 (2) ◽  
pp. 37-43
Author(s):  
Mauro Figueiredo ◽  
João Pereira ◽  
João Oliveira ◽  
Bruno Araújo

Point cloud models are a common shape representation for several reasons. Three-dimensional scanning devices are widely used nowadays and points are an attractive primitive for rendering complex geometry. Nevertheless, there is not much literature on collision detection for point cloud models. This paper presents a novel collision detection algorithm for large point cloud models using voxels, octrees and bounding spheres hierarchies (BSH). The scene graph is divided in voxels. The objects of each voxel are organized intoan octree. Due to the high number of points in the scene, each non-empty cell of the octree is organized in a bounding sphere hierarchy, based on an R-tree hierarchy like structure. The BSH hierarchies are used to group neighboring points and filter out very quickly parts of objects that do not interact with other models. Points derived from laser scanned data typically are not segmented and can have arbitrary spatial resolution thus introducing computational and modeling issues. We address these issues and our results show that the proposed collision detection algorithm effectively finds intersections between point cloud models since it is able to reduce the number of bounding volume checks and updates


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2337 ◽  
Author(s):  
Xiangtian Zheng ◽  
Xiufeng He ◽  
Xiaolin Yang ◽  
Haitao Ma ◽  
Zhengxing Yu ◽  
...  

Ground-based synthetic aperture radar interferometry (GB-InSAR) is a valuable tool for deformation monitoring. The 2D interferograms obtained by GB-InSAR can be integrated with a 3D terrain model to visually and accurately locate deformed areas. The process has been preliminarily realized by geometric mapping assisted by terrestrial laser scanning (TLS). However, due to the line-of-sight (LOS) deformation monitoring, shadow and layover often occur in topographically rugged areas, which makes it difficult to distinguish the deformed points on the slope between the ones on the pavement. The extant resampling and interpolation method, which is designed for solving the scale difference between the point cloud and radar pixels, does not consider the local scattering characteristics difference of slope. The scattering difference information of road surface and slope surface in the terrain model is deeply weakened. We propose a differentiated method with integrated GB-InSAR and terrain surface point cloud. Local geometric and scattering characteristics of the slope were extracted, which account for pavement and slope differentiating. The geometric model is based on a GB-InSAR system with linear repeated-pass and the topographic point cloud relative observation geometry. The scattering model is based on k-nearest neighbor (KNN) points in small patches varies as radar micro-wave incident angle changes. Simulation and a field experiment were conducted in an open-pit mine. The results show that the proposed method effectively distinguishes pavement and slope surface deformation and the abnormal area boundary is partially relieved.


Sign in / Sign up

Export Citation Format

Share Document