An Improved Unsupervised Color Correction Algorithm for Underwater Image

Author(s):  
Xudong Wang ◽  
Jingya Yang ◽  
Pei Ruan ◽  
Peizhen Wang
2021 ◽  
Vol 91 ◽  
pp. 106981
Author(s):  
Weidong Zhang ◽  
Xipeng Pan ◽  
Xiwang Xie ◽  
Lingqiao Li ◽  
Zimin Wang ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6392
Author(s):  
Xieliu Yang ◽  
Chenyu Yin ◽  
Ziyu Zhang ◽  
Yupeng Li ◽  
Wenfeng Liang ◽  
...  

Recovering correct or at least realistic colors of underwater scenes is a challenging issue for image processing due to the unknown imaging conditions including the optical water type, scene location, illumination, and camera settings. With the assumption that the illumination of the scene is uniform, a chromatic adaptation-based color correction technology is proposed in this paper to remove the color cast using a single underwater image without any other information. First, the underwater RGB image is first linearized to make its pixel values proportional to the light intensities arrived at the pixels. Second, the illumination is estimated in a uniform chromatic space based on the white-patch hypothesis. Third, the chromatic adaptation transform is implemented in the device-independent XYZ color space. Qualitative and quantitative evaluations both show that the proposed method outperforms the other test methods in terms of color restoration, especially for the images with severe color cast. The proposed method is simple yet effective and robust, which is helpful in obtaining the in-air images of underwater scenes.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042008
Author(s):  
Zhe Wu ◽  
Jianfgui Han ◽  
Chenghao Cao

Abstract All for underwater images, there are some drawbacks, such as low definition, serious color bias, dark brightness, etc. On the basis of in-depth analysis of common image enhancement algorithms, This paper uses the improved dark channel priority algorithm to enhance the underwater image, Improving the contrast of underwater images and color correction of underwater images. Color correction is added based on dark channel prior algorithm; Make the image look more even, higher contrast, more acceptable. The improved algorithm model has a higher transfer rate; PSNR is more balanced and has better contrast to meet the requirements of underwater image observation.


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142096164
Author(s):  
Yue Zhang ◽  
Fuchun Yang ◽  
Weikai He

Due to the absorption and scattering effect on light when traveling in water, underwater images exhibit serious weakening such as color deviation, low contrast, and blurry details. Traditional algorithms have certain limitations in the case of these images with varying degrees of fuzziness and color deviation. To address these problems, a new approach for single underwater image enhancement based on fusion technology was proposed in this article. First, the original image is preprocessed by the white balance algorithm and dark channel prior dehazing technologies, respectively; then two input images were obtained by color correction and contrast enhancement; and finally, the enhanced image was obtained by utilizing the multiscale fusion strategy which is based on the weighted maps constructed by combining the features of global contrast, local contrast, saliency, and exposedness. Qualitative results revealed that the proposed approach significantly removed haze, corrected color deviation, and preserved image naturalness. For quantitative results, the test with 400 underwater images showed that the proposed approach produced a lower average value of mean square error and a higher average value of peak signal-to-noise ratio than the compared method. Moreover, the enhanced results obtain the highest average value in terms of underwater image quality measures among the comparable methods, illustrating that our approach achieves superior performance on different levels of distorted and hazy images.


Sign in / Sign up

Export Citation Format

Share Document