Fault Diagnosis of Transformer Based on Quantum-Behaved Particle Swarm Optimization-Based Least Squares Support Vector Machines

Author(s):  
Zhi-biao Shi ◽  
Yang Li ◽  
Yun-feng Song ◽  
Tao Yu
Author(s):  
Weilin Luo ◽  
C. Guedes Soares ◽  
Zaojian Zou

Combined with the free-running model tests of KVLCC ship, the system identification (SI) based on support vector machines (SVM) is proposed for the prediction of ship maneuvering motion. The hydrodynamic derivatives in an Abkowitz model are determined by the Lagrangian factors and the support vectors in the SVM regression model. To obtain the optimized structural factors in SVM, particle swarm optimization (PSO) is incorporated into SVM. To diminish the drift of hydrodynamic derivatives after regression, a difference method is adopted to reconstruct the training samples before identification. The validity of the difference method is verified by correlation analysis. Based on the Abkowitz mathematical model, the simulation of ship maneuvering motion is conducted. Comparison between the predicted results and the test results demonstrates the validity of the proposed methods in this paper.


Author(s):  
Mohammad Reza Daliri

AbstractIn this article, we propose a feature selection strategy using a binary particle swarm optimization algorithm for the diagnosis of different medical diseases. The support vector machines were used for the fitness function of the binary particle swarm optimization. We evaluated our proposed method on four databases from the machine learning repository, including the single proton emission computed tomography heart database, the Wisconsin breast cancer data set, the Pima Indians diabetes database, and the Dermatology data set. The results indicate that, with selected less number of features, we obtained a higher accuracy in diagnosing heart, cancer, diabetes, and erythematosquamous diseases. The results were compared with the traditional feature selection methods, namely, the F-score and the information gain, and a superior accuracy was obtained with our method. Compared to the genetic algorithm for feature selection, the results of the proposed method show a higher accuracy in all of the data, except in one. In addition, in comparison with other methods that used the same data, our approach has a higher performance using less number of features.


2015 ◽  
Vol 32 (5) ◽  
pp. 1194-1213 ◽  
Author(s):  
Long Zhang ◽  
Jianhua Wang

Purpose – It is greatly important to select the parameters for support vector machines (SVM), which is usually determined by cross-validation. However, the cross-validation is very time-consuming and complicated to create good parameters for SVM. The parameter tuning issue can be solved in the optimization framework. The paper aims to discuss these issues. Design/methodology/approach – In this paper, the authors propose a novel variant of particle swarm optimization (PSO) for the selection of parameters in SVM. The proposed algorithm is denoted as PSO-TS (PSO algorithm with team-search strategy), which is with team-based local search strategy and dynamic inertia factor. The ultimate design purpose of the strategy is to realize that the algorithm can be suitable for different problems with good balance between exploration and exploitation and efficiently control the inertia of the flight. In PSO-TS, the particles accomplish the assigned tasks according to different topology and detailedly search the achieved and potential regions. The authors also theoretically analyze the behavior of PSO-TS and demonstrate they can share the different information from their neighbors to maintain diversity for efficient search. Findings – The validation of PSO-TS is conducted over a widely used benchmark functions and applied to tuning the parameters of SVM. The experimental results demonstrate that the proposed algorithm can tune the parameters of SVM efficiently. Originality/value – The developed method is original.


Sign in / Sign up

Export Citation Format

Share Document