Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 679 ◽  
Author(s):  
Frédéric Li ◽  
Kimiaki Shirahama ◽  
Muhammad Nisar ◽  
Lukas Köping ◽  
Marcin Grzegorzek

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 692
Author(s):  
Jingcheng Chen ◽  
Yining Sun ◽  
Shaoming Sun

Human activity recognition (HAR) is essential in many health-related fields. A variety of technologies based on different sensors have been developed for HAR. Among them, fusion from heterogeneous wearable sensors has been developed as it is portable, non-interventional and accurate for HAR. To be applied in real-time use with limited resources, the activity recognition system must be compact and reliable. This requirement can be achieved by feature selection (FS). By eliminating irrelevant and redundant features, the system burden is reduced with good classification performance (CP). This manuscript proposes a two-stage genetic algorithm-based feature selection algorithm with a fixed activation number (GFSFAN), which is implemented on the datasets with a variety of time, frequency and time-frequency domain features extracted from the collected raw time series of nine activities of daily living (ADL). Six classifiers are used to evaluate the effects of selected feature subsets from different FS algorithms on HAR performance. The results indicate that GFSFAN can achieve good CP with a small size. A sensor-to-segment coordinate calibration algorithm and lower-limb joint angle estimation algorithm are introduced. Experiments on the effect of the calibration and the introduction of joint angle on HAR shows that both of them can improve the CP.


2019 ◽  
Vol 11 (21) ◽  
pp. 2531 ◽  
Author(s):  
Zhiqiang Gao ◽  
Dawei Liu ◽  
Kaizhu Huang ◽  
Yi Huang

Today’s smartphones are equipped with embedded sensors, such as accelerometers and gyroscopes, which have enabled a variety of measurements and recognition tasks. In this paper, we jointly investigate two types of recognition problems in a joint manner, e.g., human activity recognition and smartphone on-body position recognition, in order to enable more robust context-aware applications. So far, these two problems have been studied separately without considering the interactions between each other. In this study, by first applying a novel data preprocessing technique, we propose a joint recognition framework based on the multi-task learning strategy, which can reduce computational demand, better exploit complementary information between the two recognition tasks, and lead to higher recognition performance. We also extend the joint recognition framework so that additional information, such as user identification with biometric motion analysis, can be offered. We evaluate our work systematically and comprehensively on two datasets with real-world settings. Our joint recognition model achieves the promising performance of 0.9174 in terms of F 1 -score for user identification on the benchmark RealWorld Human Activity Recognition (HAR) dataset. On the other hand, in comparison with the conventional approach, the proposed joint model is shown to be able to improve human activity recognition and position recognition by 5.1 % and 9.6 % respectively.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3647
Author(s):  
Sebastian Scheurer ◽  
Salvatore Tedesco ◽  
Brendan O’Flynn ◽  
Kenneth N. Brown

The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really do achieve better subject-dependent performance than subject-independent performance, whether a model trained with data from many users achieves better subject-independent performance than one trained with data from a single person, and whether one trained with data from a single specific target user performs better for that user than one trained with data from many. To those ends, we compare four popular machine learning algorithms’ subject-dependent and subject-independent performances across eight datasets using three different personalisation–generalisation approaches, which we term person-independent models (PIMs), person-specific models (PSMs), and ensembles of PSMs (EPSMs). We further consider three different ways to construct such an ensemble: unweighted, κ -weighted, and baseline-feature-weighted. Our analysis shows that PSMs outperform PIMs by 43.5% in terms of their subject-dependent performances, whereas PIMs outperform PSMs by 55.9% and κ -weighted EPSMs—the best-performing EPSM type—by 16.4% in terms of the subject-independent performance.


2020 ◽  
Vol 2 (1) ◽  
pp. 18-32 ◽  
Author(s):  
Federico Cruciani ◽  
Anastasios Vafeiadis ◽  
Chris Nugent ◽  
Ian Cleland ◽  
Paul McCullagh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document