A fast contrast enhancement method for forward looking infrared imaging system

Author(s):  
Gyu-Hee Park ◽  
Jung-Su Youn
2021 ◽  
Author(s):  
Feng Deng ◽  
Zhong Su ◽  
Rui Wang ◽  
Jun Liu ◽  
Yanzhi Wang

Most of the existing infrared imaging systems employ the scheme of FPGA/FPGA+DSP with numerous peripheral circuits, which leads to complex hardware architecture, limited system versatility, and low computing performance. It has become an intriguing technical problem worldwide to simplify the system structure while improving the imaging performance. In this paper, we present a novel real-time infrared imaging system based on the Rockchip’s RV1108 visual processing SoC (system on chip). Moreover, to address the problem of low contrast and dim details in infrared images with a high dynamic range, an adaptive contrast enhancement method based on bilateral filter is proposed and implemented on the system. First, the infrared image is divided into a base layer and a detail layer through bilateral filter, then the base layer is compressed by an adaptive bi-plateau histogram equalization algorithm, and finally a linear-weighted method is used to integrate the detail layer to obtain the image with enhanced details. The experimental results indicate that compared with traditional algorithms, our method can effectively improve the overall contrast of the image, while effectively retaining the image details without noise magnification. For an image of 320*240 pixels, the real-time processing rate of the system is 68 frames/s. The system has the characteristics of simplified structure, perceptive image details, and high computing performance.


2017 ◽  
Vol T170 ◽  
pp. 014027 ◽  
Author(s):  
A Huber ◽  
D Kinna ◽  
V Huber ◽  
G Arnoux ◽  
I Balboa ◽  
...  

2021 ◽  
Author(s):  
Bo Zhang ◽  
Wei-jun Chang ◽  
Guo-qi Teng ◽  
Ming-xuan Zhang

Sign in / Sign up

Export Citation Format

Share Document