Elastic shape registration using an incremental free form deformation approach with the ICP algorithm

Author(s):  
Hossam Abdelmunim ◽  
Aly A. Farag
Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 125 ◽  
Author(s):  
Yedukondala Dwith Chenna ◽  
Pejhman Ghassemi ◽  
T. Pfefer ◽  
Jon Casamento ◽  
Quanzeng Wang

2021 ◽  
Vol 9 (10) ◽  
pp. 1107
Author(s):  
Diego Villa ◽  
Francesco Furcas ◽  
Jan Oscar Pralits ◽  
Giuliano Vernengo ◽  
Stefano Gaggero

A method for the morphing of surface/volume meshes suitable to be used in hydrodynamic shape optimization is proposed. Built in the OpenFOAM environment, it relies on a Laplace equation that propagates the modifications of the surface boundaries, realized by applying a free-form deformation to a subdivision surface description of the geometry, into the computational volume mesh initially built through a combination of BlockMesh with cfMesh. The feasibility and robustness of this mesh morphing technique, used as a computationally efficient pre-processing tool, is demonstrated in the case of the resistance minimization of the DTC hull. All the hull variations generated within a relatively large design space are efficiently and successfully realized, i.e., without mesh inconsistencies and quality issues, only by deforming the initial mesh of the reference geometry. Coupled with a surrogate model approach, a significant reduction in the calm water resistance, in the extent of 10%, has been achieved in a reasonable computational time.


Author(s):  
Stavros N. Leloudas ◽  
Giorgos A. Strofylas ◽  
Ioannis K. Nikolos

Given the importance of structural integrity of aerodynamic shapes, the necessity of including a cross-sectional area equality constraint among other geometrical and aerodynamic ones arises during the optimization process of an airfoil. In this work an airfoil optimization scheme is presented, based on Area-Preserving Free-Form Deformation (AP FFD), which serves as an alternative technique for the fulfillment of a cross-sectional area equality constraint. The AP FFD is based on the idea of solving an area correction problem, where a minimum possible offset is applied on all free-to-move control points of the FFD lattice, subject to the area preservation constraint. Due to the linearity of the area constraint in each axis, the extraction of an inexpensive closed-form solution to the area preservation problem is possible by using Lagrange Multipliers. A parallel Differential Evolution (DE) algorithm serves as the optimizer, assisted by two Artificial Neural Networks as surrogates. The use of multiple surrogate models, in conjunction with the inexpensive solution to the area correction problem, render the optimization process time efficient. The application of the proposed methodology for wind turbine airfoil optimization demonstrates its applicability and effectiveness.


2013 ◽  
Vol 60 (3) ◽  
pp. 537-563 ◽  
Author(s):  
Francesco Ballarin ◽  
Andrea Manzoni ◽  
Gianluigi Rozza ◽  
Sandro Salsa

Author(s):  
Vincent Cheutet ◽  
Jean-Philippe Pernot ◽  
Jean-Claude Leon ◽  
Bianca Falcidieno ◽  
Franca Giannini

To limit low-level manipulations of free-form surfaces, the concept of Fully Free Form Deformation Features (δ-F4) have been introduced. They correspond to shapes obtained by deformation of a surface area according to specified geometric constraints. In our work, we mainly focused on those features aimed at enforcing the visual effect of the so-called character lines, extensively used by designers to specify the shape of an object. Therefore, in the proposed approach, 3D lines are used to drive surface deformation over specified areas. Depending on the wished shape and reflection light effects, the insertion of character lines may generate surface tangency discontinuities. In CAD systems, such kind of discontinuities is generally created by a decomposition of the initial surface into several patches. This process can be tedious and very complex, depending on the shape of the deformation area and the desired surface continuity. Here, a method is proposed to create discontinuities on a surface, using the trimming properties of surfaces. The corresponding deformation features produce the resulting surface in a single modification step and handle simultaneously more constraints than current CAD systems. The principle of the proposed approach is based on arbitrary shaped discontinuities in the parameter domain of the surface to allow the surface exhibiting geometric discontinuities at user-prescribed points or along lines. The proposed approach is illustrated with examples obtained using our prototype software.


2011 ◽  
Vol 5 (4) ◽  
pp. 341 ◽  
Author(s):  
S. Jung ◽  
M. Hong ◽  
M.-H. Choi

Sign in / Sign up

Export Citation Format

Share Document