generate surface
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 59 (12) ◽  
pp. 880-885
Author(s):  
Tae Wan Park ◽  
Woon Ik Park

Nanopatterning methods for pattern formation of high-resolution nanostructures are essential for the fabrication of various electronic devices, including wearable displays, high-performance semiconductor devices, and smart biosensor systems. Among advanced nanopatterning methods, nanotransfer printing (nTP) has attracted considerable attention due to its process simplicity, low cost, and great pattern resolution. However, to diversify the pattern geometries for wide device applications, more effective and useful nTP based patterning methods must be developed. Here, we introduce a facile and practical nanofabrication method to obtain various three-dimensional (3D) ultra-thin metallic films via thermally assisted nTP (T-nTP). We show how to generate surface-wrinkled 3D nanostructures, such as angular line, concave-valley, and convex-hill structures. We also demonstrate the principle for effectively forming 3D nanosheets by T-nTP, using Si master molds with a low aspect ratio (A/R ≤ 1). In addition, we explain how to obtain a 3D wavy structure when using a mold with high A/R (≥ 3), based on the isotropic deposition process. We also produced a highly ordered 3D Au nanosheet on flexible PET over a large area (> 15 µm). We expect that this T-nTP approach using various Si mold shapes will be applied for the useful fabrication of various metal/oxide nanostructured devices with high surface area.


2021 ◽  
Vol 15 (1) ◽  
pp. 7754-7761
Author(s):  
Satish Rao Ganapathy ◽  
H. Salleh

The demand for energy harvesting technologies has been increasing over the years attributed to its significance to low power applications. One of the key problems associated with the vibration-based harvester is the fact that these harvesters generate low usable power while maximum peak power can only be attained when the device frequency matches the source frequency. In this study, triboelectric mechanism was investigated in combination with the piezoelectric mechanism in order to enhance the performance of the harvester. Triboelectric mechanism functions in a way that two dissimilar materials were placed in contact and then separated in order to generate surface charges and electric potential between them. Main design factors such as materials, surface area, structure, effective length, and etc. play a significant part in the enhancement of the performance. This study proposed two distinct designs of dual cantilevered structure and touch-based triboelectric energy harvester and evaluated the efficiency of the output between both structures. In addition, the effect of extension and surface area of triboelectric materials was investigated while the influence of these factors on the performance of the harvester was evaluated. The highest value of peak power obtained for dual cantilevered hybrid harvester was 650 µW across a load of 160 kΩ and frequency of 26 Hz. On the other hand, touch-based energy harvester produced an output peak power of 1220 µW across a load of 400 kΩ at 25 Hz. Achieving these power outputs may be able to power up electronics such as smartwatches, hearing aid and etc. Future studies on reliable low power applications to further advance the green power technology will be investigated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Gao ◽  
Tianyi Shao ◽  
Yunpeng Yu ◽  
Yujie Xiong ◽  
Lihua Yang

AbstractActing by producing reactive oxygen species (ROS) in situ, nanozymes are promising as antimicrobials. ROS’ intrinsic inability to distinguish bacteria from mammalian cells, however, deprives nanozymes of the selectivity necessary for an ideal antimicrobial. Here we report that nanozymes that generate surface-bound ROS selectively kill bacteria over mammalian cells. This result is robust across three distinct nanozymes that universally generate surface-bound ROS, with an oxidase-like silver-palladium bimetallic alloy nanocage, AgPd0.38, being the lead model. The selectivity is attributable to both the surface-bound nature of ROS these nanozymes generate and an unexpected antidote role of endocytosis. Though surface-bound, the ROS on AgPd0.38 efficiently eliminated antibiotic-resistant bacteria and effectively delayed the onset of bacterial resistance emergence. When used as coating additives, AgPd0.38 enabled an inert substrate to inhibit biofilm formation and suppress infection-related immune responses in mouse models. This work opens an avenue toward biocompatible nanozymes and may have implication in our fight against antimicrobial resistance.


2021 ◽  
pp. 875529302098199
Author(s):  
Boqin Xu ◽  
Ellen M Rathje

This study uses recorded ground motions at soil sites over a range of shaking intensities to investigate the effects of soil nonlinearity on the high-frequency spectral decay, as quantified by the parameter [Formula: see text]. Equivalent-linear site response analyses indicate that [Formula: see text] should increase significantly with increasing shear strain and ground motion intensity due to increases in soil damping. However, using more than 2500 motions from 32 sites, this study shows that [Formula: see text] does not vary systematically with the induced shear strain but instead remains at its small-strain value. This observation indicates that high-frequency components of motion are consistent with small-strain damping, rather than the strain-compatible damping used in site response analysis. It is demonstrated that equivalent-linear site response analyses for large strains can be modified to generate surface motions with more realistic high-frequency content by scaling the predicted surface motion to fit the small-strain [Formula: see text] or by employing frequency-dependent soil properties that account for the frequency dependence of the induced strains.


2021 ◽  
pp. 19-26
Author(s):  
Andrey Feofanov ◽  

Long-term research has proved the connection between old mine workings preserved at the outcrops of coal seams and land subsidence, and sinkhole collapse. Now the causes and types of such disturbances are determined, the most dangerous of which are caves, over various types of the abandoned mine workings. In addition to it, a method has been developed and improved for assessing the hazard rate of any abandoned working (cavity) with relation to sinkholes for mining and geological conditions of the Donets Basin. At the same time, a number of cases are known when cavities wiped out due to the failure of the overlying rocks reappeared on the upper levels, threatening to generate surface depression. Thus, the former, but already liquidated cavity seemed to pop in the overlying rocks. The understudied process of cavities moving in the subsurface coal-bearing strata from the places of their original location towards the surface in the Donets Basin is described. The computation of stage-by-stage popping of relatively undestroyed mine opening (cavity) in coalbearing strata of different strength is made. The conditions and factors contributing to the popping of the remaining cavities towards the overlying levels are determined. An assumption (hypothesis) on the inevitability of popping of any abandoned working or cavity preserved on the upper levels, with a favorable combination of the affecting factors is made. The necessity for this process to be taken into account in assessing the hazard rate of the surface areas undermined by the abandoned mine workings at shallow depths due to their potential capability of making sinkholes is demonstrated. The effective reference documents regulating the procedure for assessing the hazard rate of abandoned mine workings (cavities) at shallow depths do not take into account popping of cavities that hurts correctness of the results obtained for them.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. V473-V479
Author(s):  
Rob Holt ◽  
Andy Lubrano

When present, surface-consistent (shot and/or receiver) phase instability will generate surface-consistent time shifts that are at least partially removed from seismic data when surface-consistent residual statics corrections are applied. The phase instability will not be fully corrected and lingers undetected in the data throughout the remainder of the processing workflow. After processing finishes, seismic interpreters often need to apply laterally varying phase rotations to tie their onshore 3D seismic data to synthetic seismograms, before starting detailed stratigraphic interpretation projects. We have developed and tested a new surface-consistent seismic processing workflow that can be applied to increase the phase stability of our seismic data. It is run after the final pass of conventional surface-consistent residual shot and receiver statics corrections have been applied to optimally align the seismic traces. The phase stability corrections are estimated from an additional pass of surface-consistent residual shot and receiver statics corrections that are calculated on the phase-independent seismic trace envelopes. We demonstrate the application of the workflow using synthetic and real seismic data. We gained confidence that the workflow was performing as expected after we intentionally phase rotated a small subset of the shots and receivers in our seismic test data sets and observed that the workflow corrected these intentionally phase-rotated traces with a high level of accuracy.


Author(s):  
R Turnbull ◽  
R Rahmani ◽  
H Rahnejat

Ball bearings are an integral part of many machines and mechanisms and often determine their performance limits. Vibration, friction and power loss are some of the key measures of bearing performance. Therefore, there have been many predictive analyses of bearing performance with emphasis on various aspects. The current study presents a mathematical model, incorporating bearing dynamics, mechanics of rolling element-to-races contacts as well as the elastodynamics of the bearing outer ring as a focus of the study. It is shown that the bearing power loss in cage cycles increases by as much as 4% when the flexibility of the outer ring is taken into account as a thick elastic ring, based on Timoshenko beam theory as opposed to the usual assumption of a rigid ring in other studies. Geometric optimisation has shown that the lifetime power consumption can be reduced by 1.25%, which is a significant source of energy saving when considering the abundance of machines using rolling element bearings. The elastodynamics of bearing rings significantly affects the radial bearing clearance through increased roller loads and generated contact pressures. The flexible ring dynamics is shown to generate surface waviness through global elastic wave propagation, not hitherto taken into account in contact dynamics of rollers-to-raceways which are generally considered to be subjected to only localised Hertzian deflection. The elastodynamic behaviour reduces the elastohydrodynamic film thickness, affecting contact friction, wear, fatigue, vibration, noise and inefficiency.


2020 ◽  
pp. 152808372093222
Author(s):  
S Navid Hosseini Abbandanak ◽  
Mehdi Abdollahi Azghan ◽  
Amin Zamani ◽  
Mehrdad Fallahnejad ◽  
Reza Eslami-Farsani ◽  
...  

The remarkable resurgence of fiber metal laminates (FMLs) is certainly attributed to the hybrid properties inherent to light metals and fibers reinforced polymer (FRP). There are few reports on the role of nano-size reinforcements in these composites. In this study, the effect of graphene nanoplatelets (GNPs) on the flexural and Charpy impact properties of FMLs of aluminum (Al) 2024 reinforced with hybrid glass/Kevlar fibers-epoxy was investigated. Different wt.% of GNPs (0.0, 0.1, 0.25 and 0.5) and hand lay-up method were used to fabricate nano-FMLs followed by evaluating them in three-point bend and Charpy impact tests. Before making the FMLs, the surfaces of Al sheets were modified to generate surface pores/nano-pores in order to improve the interfacial bonding within the FMLs layers. The FMLs containing 0.1 wt.% GNPs exhibited 10%, 9% and 11% improvement in flexural strength and modulus and impact strength, respectively, compared to the FMLs containing 0.0 wt.% GNPs. Increase of the GNPs to 0.25 wt.% caused a reduction of the flexural strength and modulus and impact strength values; 13.7%, 3% and 25.5% compared to the samples without GNPs. Also increase of the GNPs to 0.5 wt.% decreased these properties to 31.3%, 8.8% and 29.5%. Scanning electron microscopy (SEM) observations of their fracture surfaces showed better adhesion at both polymer/fibers (within the FRP) and Al/FRP interfaces. However, at higher wt.% of GNPs, the FMLs became weaker and more brittle. Agglomerated GNPs at the Al/FRP interface penetrated/filled the surface pores/nano-pores on the Al surfaces. Therefore prevent the polymer penetration in pores, resulting in weak interfacial bond and thus overall weaker and less ductile FMLs. As a result, the Charpy impact values for the 0.25 and 0.5 wt.% GNPs samples were respectively 33 and 37 percent smaller than that for the 0.1 wt.% GNPs sample.


2020 ◽  
Vol 9 (1-2) ◽  
pp. 53-66
Author(s):  
Jijil JJ Nivas ◽  
Elaheh Allahyari ◽  
Salvatore Amoruso

AbstractDirect femtosecond (fs) laser surface structuring became a versatile way to generate surface structures on solid targets demonstrating a high degree of flexibility and controllability in creating different types of structures for many applications. This approach demonstrated an alteration in various properties of the surface, such as optical properties, wetting response, etc. This paper focuses on direct fs laser surface structuring using complex light beams with spatially variant distribution of the polarization and fluence, with emphasis on the results obtained by the authors by exploiting q-plate beam converters. Although striking scientific findings were achieved so far, direct fs laser processing with complex light fields is still a novel research field, and new exciting findings are likely to appear on its horizon.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 492
Author(s):  
Agnieszka Zuber ◽  
Akash Bachhuka ◽  
Steven Tassios ◽  
Caroline Tiddy ◽  
Krasimir Vasilev ◽  
...  

Gold in a rock is usually associated with other elements, forms nuggets, or is hosted within the crystal lattice of a mineral (e.g., pyrite) and is often heterogeneously distributed and trapped inside the rock matrix even after crushing. Gold can be liberated from these rock matrices by chemical leaching, but then their concentration becomes too low for detection by a portable method due to the dilution effect of the leaching process. In this paper, we present a proof-of-concept method for gold pre-concentration to enable the detection of gold in rock at low levels using a portable technique. Two coating methods, plasma polymerization (PP) and wet chemistry (WC), were utilized to generate surface coatings, which were then compared for their effectiveness in binding gold ions. Laser-induced breakdown spectroscopy (LIBS) was used as a portable technique for the detection of immobilized gold on these modified surfaces. The detection limit for pure gold ions in solution incubated on PP and WC coatings was determined to be as low as 80 ppb. To demonstrate the real-life capability of the method, it was tested for rock sample leachates bearing 300–500 ppb gold.


Sign in / Sign up

Export Citation Format

Share Document