prototype software
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 33)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Ping Zhang ◽  
Ran Xu Zhang ◽  
Xiao Shuai Chen ◽  
Xiao Yue Zhou ◽  
Esther Raithel ◽  
...  

Abstract Background The cartilage segmentation algorithms make it possible to accurately evaluate the morphology and degeneration of cartilage. There are some factors (location of cartilage subregions, hydrarthrosis and cartilage degeneration) that may influence the accuracy of segmentation. It is valuable to evaluate and compare the accuracy and clinical value of volume and mean T2* values generated directly from automatic knee cartilage segmentation with those from manually corrected results using prototype software. Method Thirty-two volunteers were recruited, all of whom underwent right knee magnetic resonance imaging examinations. Morphological images were obtained using a three-dimensional (3D) high-resolution Double-Echo in Steady-State (DESS) sequence, and biochemical images were obtained using a two-dimensional T2* mapping sequence. Cartilage score criteria ranged from 0 to 2 and were obtained using the Whole-Organ Magnetic Resonance Imaging Score (WORMS). The femoral, patellar, and tibial cartilages were automatically segmented and divided into subregions using the post-processing prototype software. Afterwards, all the subregions were carefully checked and manual corrections were done where needed. The dice coefficient correlations for each subregion by the automatic segmentation were calculated. Results Cartilage volume after applying the manual correction was significantly lower than automatic segmentation (P < 0.05). The percentages of the cartilage volume change for each subregion after manual correction were all smaller than 5%. In all the subregions, the mean T2* relaxation time within manual corrected subregions was significantly lower than in regions after automatic segmentation (P < 0.05). The average time for the automatic segmentation of the whole knee was around 6 min, while the average time for manual correction of the whole knee was around 27 min. Conclusions Automatic segmentation of cartilage volume has a high dice coefficient correlation and it can provide accurate quantitative information about cartilage efficiently without individual bias. Advances in knowledge: Magnetic resonance imaging is the most promising method to detect structural changes in cartilage tissue. Unfortunately, due to the structure and morphology of the cartilages obtaining accurate segmentations can be problematic. There are some factors (location of cartilage subregions, hydrarthrosis and cartilage degeneration) that may influence segmentation accuracy. We therefore assessed the factors that influence segmentations error.


2021 ◽  
Vol 12 (1) ◽  
pp. 165
Author(s):  
Marko Lazić ◽  
Ana Perišić ◽  
Branko Perišić

The automatic generation of building boundaries in contemporary research and engineering projects and practices is dominantly characterized by interior functional constraints. As a basis for the automated generation of various building boundaries, the solution presented in this paper is a novel approach that ignores the internal (functional) and focuses only on the external (non-functional) impacts. The primary orientation on external impacts may be, at any instance, extended by suitable complementary traditional methodology. The applied research methodology and presented method rely on a developed extendible rule-based system that simplifies floor plan creation by the recursive application of a formulated spatial grid generation algorithm. Based on starting parameter values (mainly the lot and building area spaces) the algorithm tends to create a set of grids that satisfy initial constraints by marking the individual grid cells as a part of the building or empty. The presented conceptual framework model served as a foundation for creating a prototype software application that supports the experimental generation of grid arrays that are transformed into readable images of residential building boundaries. For the initial validation of the developed methodology, method, and algorithm, the concrete parametric resolution is set to 1 m. The comparative analysis has shown that the presented approach overcomes some of the limitations of previous related research that generate building boundaries in simple rectangular form or with limited variability. The proposed method, in its current stage, outperforms discussed existing methods concerning complex shape boundary building plan generation. Besides that, there is a broad space for further enhancement directions concerning the interoperability with other, independently developed, frameworks, and software tools.


2021 ◽  
Author(s):  
David Hickey ◽  
Rob Brennan

This paper describes a tool using an extended Data Privacy Vocabulary (the DPV) to audit and monitor GDPR compliance of international transfers of personal data. New terms were identified which have been proposed as extensions to the DPV W3C Working Group. A prototype software tool was built based on the model plus a set of validation rules, and synthetic use-cases created to test the capabilities of the model and tool (together a compliance framework). This framework was created because the rules around international transfer compliance are complex and changing, there is an absence of a common approach to ensuring compliance, few tools exist to assist, and those that do lack interoperability. Evaluation results demonstrate that the proposed model improves compliance identification and standardisation. The tool received positive feedback from the data protection practitioners who participated in the evaluation, and an initial version of is now in use in one financial services organisation. While currently the tool only addresses international transfers, in theory the framework can be extended through further work to the broader area of compliance of other aspects of the GPDR.


2021 ◽  
Author(s):  
Fankai Kong ◽  
Wenbo Cui ◽  
Fei Chen ◽  
Zhenyang Wang ◽  
Zhongchen Zhou

According to the insufficient force analysis of the cable in the process of winch retraction, especially the insufficient research on the flexible cable retraction process such as the UHMWPE cable, the dynamic simulation analysis of the retraction process of the parallel grooved multi-layer drum and UHMWPE cable cable is carried out by using the virtual prototype software ADAMS. The simulation model of the cable is created by using the macro command program, and the virtual prototype model of the cable drum is completed, and the force changes of the cable under different rotating speeds are simulated.The simulation results show that the contact force between the cable and the double winding drum can be quickly stable under the specific load, and with the increase of the rotating speed, the maximum value of the tension change of the cable increases, but it is finally stable at a fixed value. The results can provide some reference for structural strength calculation of cable storage drum, selection of high molecular polyethylene cable and dynamic analysis of cable arranger under load.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6946
Author(s):  
Michiko Yoshitake

A database of material property relationships, which serves as a scientific principles database, and a database search system are proposed and developed. The use of this database can support a broader research perspective, which is increasingly important in the era of automated computer-aided experimentation and machine learning of experimental and calculated data. Examples of the wider use of scientific principles in materials research are presented. The database and its advantages are described. An implementation of the proposed database and search system as a prototype software is reported. The usefulness of the database and search system is demonstrated by an example of a surprising but reasonable discovery.


Author(s):  
Winfield Chen ◽  
Lloyd T. Elliott

We improve the efficiency of population genetic file formats and GWAS computation by leveraging the distribution of samples in population-level genetic data. We identify conditional exchangeability of these data, recommending finite state entropy algorithms as an arithmetic code naturally suited for compression of population genetic data. We show between [Formula: see text] and [Formula: see text] speed and size improvements over modern dictionary compression methods that are often used for population genetic data such as Zstd and Zlib in computation and decompression tasks. We provide open source prototype software for multi-phenotype GWAS with finite state entropy compression demonstrating significant space saving and speed comparable to the state-of-the-art.


Author(s):  
Sharon Jewell ◽  
Stephen Hobson ◽  
Grant Brewer ◽  
Michelle Rogers ◽  
Jed A. Hartings ◽  
...  

Abstract Background Spreading depolarizations (SDs) occur in some 60% of patients receiving intensive care following severe traumatic brain injury and often occur at a higher incidence following serious subarachnoid hemorrhage and malignant hemisphere stroke (MHS); they are independently associated with worse clinical outcome. Detection of SDs to guide clinical management, as is now being advocated, currently requires continuous and skilled monitoring of the electrocorticogram (ECoG), frequently extending over many days. Methods We developed and evaluated in two clinical intensive care units (ICU) a software routine capable of detecting SDs both in real time at the bedside and retrospectively and also capable of displaying patterns of their occurrence with time. We tested this prototype software in 91 data files, each of approximately 24 h, from 18 patients, and the results were compared with those of manual assessment (“ground truth”) by an experienced assessor blind to the software outputs. Results The software successfully detected SDs in real time at the bedside, including in patients with clusters of SDs. Counts of SDs by software (dependent variable) were compared with ground truth by the investigator (independent) using linear regression. The slope of the regression was 0.7855 (95% confidence interval 0.7149–0.8561); a slope value of 1.0 lies outside the 95% confidence interval of the slope, representing significant undersensitivity of 79%. R2 was 0.8415. Conclusions Despite significant undersensitivity, there was no additional loss of sensitivity at high SD counts, thus ensuring that dense clusters of depolarizations of particular pathogenic potential can be detected by software and depicted to clinicians in real time and also be archived.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 769
Author(s):  
Helen Pearce ◽  
James G. Levine ◽  
Xiaoming Cai ◽  
A. Rob MacKenzie

The benefits of ‘green infrastructure’ are multi-faceted and well-documented, but estimating those of individual street-scale planting schemes at planning can be challenging. This is crucial to avoid undervaluing proposed schemes in cost–benefit analyses, and ensure they are resilient to ‘value engineering’ between planning and implementation. Here, we introduce prototype software enabling urban practitioners to estimate the site-specific air quality impacts of roadside vegetation barriers: highly localised changes in pollutant concentrations due to changes in the dispersion of vehicular emissions close to source. We summarise the recent shift in understanding regarding the impacts of vegetation on urban air pollution towards changes in pollutant dispersion (cf. deposition) and describe our prototype software, offering rapid estimates thereof. First tests of the underlying model’s performance are promising, reproducing: annual mean NO2 and PM2.5 concentrations in a street canyon (Marylebone Road, London, UK) to within 10% and 25%, respectively; and changes in pollutant concentrations of the right order of magnitude behind roadside barriers in a wind tunnel simulation of a street canyon and a real open-road environment. However, the model underestimates the benefits of a barrier in a simulated street canyon under perpendicular wind conditions. The prototype software is a first step towards informing practitioners of the site-specific impacts of vegetation barriers, which should always be additional to (i.e., no substitute for) essential emission reductions. The code is open-source to engage further researchers in its continued development.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1676
Author(s):  
Grzegorz Dec ◽  
Grzegorz Drałus ◽  
Damian Mazur ◽  
Bogdan Kwiatkowski

This paper contains studies of daily energy production forecasting methods for photovoltaic solar panels (PV panel) by using mathematical methods and fuzzy logic models. Mathematical models are based on analytic equations that bind PV panel power with temperature and solar radiation. In models based on fuzzy logic, we use Adaptive-network-based Fuzzy Inference Systems (ANFIS) and the zero-order Takagi-Sugeno model (TS) with specially selected linear and non-linear membership functions. The use of mentioned membership functions causes that the TS system is equivalent to a polynomial and its properties can be compared to other analytical models of PV panels found in the literature. The developed models are based on data from a real system. The accuracy of developed prognostic models is compared, and a prototype software implementing the best-performing models is presented. The software is written for a generic programmable logic controller (PLC) compliant to the IEC 61131-3 standard.


Sign in / Sign up

Export Citation Format

Share Document