scholarly journals A Deep Neural Network for Oil Spill Semantic Segmentation in Sar Images

Author(s):  
Georgios Orfanidis ◽  
Konstantinos Ioannidis ◽  
Konstantinos Avgerinakis ◽  
Stefanos Vrochidis ◽  
Ioannis Kompatsiaris
2020 ◽  
Vol 12 (6) ◽  
pp. 944 ◽  
Author(s):  
Jin Zhang ◽  
Hao Feng ◽  
Qingli Luo ◽  
Yu Li ◽  
Jujie Wei ◽  
...  

Oil spill detection plays an important role in marine environment protection. Quad-polarimetric Synthetic Aperture Radar (SAR) has been proved to have great potential for this task, and different SAR polarimetric features have the advantages to recognize oil spill areas from other look-alikes. In this paper we proposed an oil spill detection method based on convolutional neural network (CNN) and Simple Linear Iterative Clustering (SLIC) superpixel. Experiments were conducted on three Single Look Complex (SLC) quad-polarimetric SAR images obtained by Radarsat-2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). Several groups of polarized parameters, including H/A/Alpha decomposition, Single-Bounce Eigenvalue Relative Difference (SERD), correlation coefficients, conformity coefficients, Freeman 3-component decomposition, Yamaguchi 4-component decomposition were extracted as feature sets. Among all considered polarimetric features, Yamaguchi parameters achieved the highest performance with total Mean Intersection over Union (MIoU) of 90.5%. It is proved that the SLIC superpixel method significantly improved the oil spill classification accuracy on all the polarimetric feature sets. The classification accuracy of all kinds of targets types were improved, and the largest increase on mean MIoU of all features sets was on emulsions by 21.9%.


2020 ◽  
pp. 1-1
Author(s):  
Benjamin Dowden ◽  
Oscar De Silva ◽  
Weimin Huang ◽  
Dan Oldford

2021 ◽  
Vol 13 (16) ◽  
pp. 3203
Author(s):  
Won-Kyung Baek ◽  
Hyung-Sup Jung

It is well known that the polarization characteristics in X-band synthetic aperture radar (SAR) image analysis can provide us with additional information for marine target classification and detection. Normally, dual-and single-polarized SAR images are acquired by SAR satellites, and then we must determine how accurate the marine mapping performance from dual-polarized (pol) images is versus the marine mapping performance from the single-pol images in a given machine learning model. The purpose of this study is to compare the performance of single- and dual-pol SAR image classification achieved by the support vector machine (SVM), random forest (RF), and deep neural network (DNN) models. The test image is a TerraSAR-X dual-pol image acquired from the 2007 Kerch Strait oil spill event. For this, 824,026 pixels and 1,648,051 pixels were extracted from the image for the training and test, respectively, and sea, ship, oil, and land objects were classified from the image by using the three machine learning methods. The mean f1-scores of the SVM, RF, and DNN models resulting from the single-pol image were approximately 0.822, 0.882, and 0.889, respectively, and those from the dual-pol image were about 0.852, 0.908, and 0.898, respectively. The performance improvement achieved by dual-pol was about 3.6%, 2.9%, and 1% in SVM, RF, and DNN, respectively. The DNN model had the best performance (0.889) in the single-pol test while the RF model was best (0.908) in the dual-pol test. The performance improvement was approximately 2.1% and not noticeable. If the condition that dual-pol images have two-times lower spatial resolution versus single-pol images in the azimuth direction is considered, a small improvement may not be valuable. Therefore, the results show that the performance improvement by X-band dual-pol image may be not remarkable when classifying the sea, ships, oil spills, and sea and land surfaces.


Author(s):  
Weijie Yang ◽  
Yueting Hui

Image scene analysis is to analyze image scene content through image semantic segmentation, which can identify the categories and positions of different objects in an image. However, due to the loss of spatial detail information, the accuracy of image scene analysis is often affected, resulting in rough edges of FCN, inconsistent class labels of target regions and missing small targets. To address these problems, this paper increases the receptive field, conducts multi-scale fusion and changes the weight of different sensitive channels, so as to improve the feature discrimination and maintain or restore spatial detail information. Furthermore, the deep neural network FCN is used to build the base model of semantic segmentation. The ASPP, data augmentation, SENet, decoder and global pooling are added to the baseline to optimize the model structure and improve the effect of semantic segmentation. Finally, the more accurate results of scene analysis are obtained.


2018 ◽  
Vol 8 (12) ◽  
pp. 2670 ◽  
Author(s):  
Hao Guo ◽  
Guo Wei ◽  
Jubai An

Damping Bragg scattering from the ocean surface is the basic underlying principle of synthetic aperture radar (SAR) oil slick detection, and they produce dark spots on SAR images. Dark spot detection is the first step in oil spill detection, which affects the accuracy of oil spill detection. However, some natural phenomena (such as waves, ocean currents, and low wind belts, as well as human factors) may change the backscatter intensity on the surface of the sea, resulting in uneven intensity, high noise, and blurred boundaries of oil slicks or lookalikes. In this paper, Segnet is used as a semantic segmentation model to detect dark spots in oil spill areas. The proposed method is applied to a data set of 4200 from five original SAR images of an oil spill. The effectiveness of the method is demonstrated through the comparison with fully convolutional networks (FCN), an initiator of semantic segmentation models, and some other segmentation methods. It is here observed that the proposed method can not only accurately identify the dark spots in SAR images, but also show a higher robustness under high noise and fuzzy boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document