Research on Variable Universe Fuzzy Control of Double-Loop Mode Buck-Boost Converter Based on Matlab

Author(s):  
Haoshen Li ◽  
Hongmei Xu ◽  
Ruihan Jiang ◽  
Linlin Zhao
2012 ◽  
Vol 468-471 ◽  
pp. 1123-1127
Author(s):  
Jin Ning Zhi ◽  
Jian Wei Yang ◽  
Jun Zhe Dong

In order to improve the dynamic performance of five-axis heavy vehicle, a variable universe fuzzy control method is proposed to optimize suspension parameters. Five-axis multi-body dynamic model including electro-hydraulic proportional valve was firstly established in software ADAMS/Car. The variable universe fuzzy controller based on fuzzy neural network was also designed in MATLAB/Simulink, and then the co-simulation was conducted. The dynamic characteristics of five-axis heavy vehicle are studied to verify the effect of suspension parameters optimized by variable universe fuzzy control method in the A, B and C-level random pavement and different speed conditions. Simulation results show that compared with passive suspension, the real-time optimization of variable fuzzy control based on FNN can improve the ride comfort and the dynamic load of tire. Under different driving conditions, ride comfort can be increased by about 25%-30%, and the dynamic load of tire generally decreases by 25%-35%. Therefore this method has a certain practicability and effectiveness.


2017 ◽  
Vol 95 ◽  
pp. 08011
Author(s):  
Guoqing Ma ◽  
Zhenglin Yu ◽  
Guohua Cao ◽  
Ruoyan Zhang ◽  
Yanbin Zheng

Author(s):  
Wei Tao ◽  
Zhiqiang Liu

The aim of this work is to design a variable universe fuzzy control of a wheel loader semi-active cab suspension with damping multimode switching shock absorber. Considering the cost and reliability, a new type of shock absorber, whose adjustable damping characteristics are achieved by just changing the on–off statuses of two solenoid valves, is applied to the wheel loader cab suspension. The vibration model of the wheel loader, which considers the vibration characteristics of the working device, the four-wheel correlated random road excitation, and the engine vibration excitation simultaneously, is established first. Based on the working principle of the target shock absorber, the damping multi-state switching model is also established to reflect the relationship between the damping coefficients and the on–off statuses of two solenoid valves. Then, a variable universe fuzzy damping control strategy, which can determine the optimal switching sequences of the damping modes according to the cab suspension performance indexes, is designed. Finally, simulation analyses were conducted to verify the effectiveness of the proposed control approach of the wheel loader semi-active cab suspension with multimode switching shock absorber.


2011 ◽  
Vol 130-134 ◽  
pp. 1418-1421
Author(s):  
Guang Xia ◽  
Wu Wei Chen ◽  
Xi Wen Tang ◽  
Qi Ming Wang

Considering the non-linear property of the magneto-rheological damper and the low accuracy of the traditional fuzzy control, this paper introduces a semi-active magneto-rheological damper controller which is based on the improved variable universe fuzzy control strategy and conducts a simulation of it. Next, it analyzes the damping effect of the passive suspension and the semi-active suspension. As indicated by the results, the use of the advanced variable universe fuzzy control strategy can effectively improve the ride and comfort of an automobile, and it serves as a reference for the further theoretical researches and sample vehicle experiments in the future.


Sign in / Sign up

Export Citation Format

Share Document