Low cost automatic object segmentation by detecting a signature motion within an optical flow signal

Author(s):  
Alan Broun ◽  
Matthew Studley
2018 ◽  
Vol 06 (04) ◽  
pp. 267-275
Author(s):  
Ajay Shankar ◽  
Mayank Vatsa ◽  
P. B. Sujit

Development of low-cost robots with the capability to detect and avoid obstacles along their path is essential for autonomous navigation. These robots have limited computational resources and payload capacity. Further, existing direct range-finding methods have the trade-off of complexity against range. In this paper, we propose a vision-based system for obstacle detection which is lightweight and useful for low-cost robots. Currently, monocular vision approaches used in the literature suffer from various environmental constraints such as texture and color. To mitigate these limitations, a novel algorithm is proposed, termed as Pyramid Histogram of Oriented Optical Flow ([Formula: see text]-HOOF), which distinctly captures motion vectors from local image patches and provides a robust descriptor capable of discriminating obstacles from nonobstacles. A support vector machine (SVM) classifier that uses [Formula: see text]-HOOF for real-time obstacle classification is utilized. To avoid obstacles, a behavior-based collision avoidance mechanism is designed that updates the probability of encountering an obstacle while navigating. The proposed approach depends only on the relative motion of the robot with respect to its surroundings, and therefore is suitable for both indoor and outdoor applications and has been validated through simulated and hardware experiments.


2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094727
Author(s):  
Wenlong Zhang ◽  
Xiaoliang Sun ◽  
Qifeng Yu

Due to the clutter background motion, accurate moving object segmentation in unconstrained videos remains a significant open problem, especially for the slow-moving object. This article proposes an accurate moving object segmentation method based on robust seed selection. The seed pixels of the object and background are selected robustly by using the optical flow cues. Firstly, this article detects the moving object’s rough contour according to the local difference in the weighted orientation cues of the optical flow. Then, the detected rough contour is used to guide the object and the background seed pixel selection. The object seed pixels in the previous frame are propagated to the current frame according to the optical flow to improve the robustness of the seed selection. Finally, we adopt the random walker algorithm to segment the moving object accurately according to the selected seed pixels. Experiments on publicly available data sets indicate that the proposed method shows excellent performance in segmenting moving objects accurately in unconstraint videos.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Chong Shen ◽  
Zesen Bai ◽  
Huiliang Cao ◽  
Ke Xu ◽  
Chenguang Wang ◽  
...  

The drift of inertial navigation system (INS) will lead to large navigation error when a low-cost INS is used in microaerial vehicles (MAV). To overcome the above problem, an INS/optical flow/magnetometer integrated navigation scheme is proposed for GPS-denied environment in this paper. The scheme, which is based on extended Kalman filter, combines INS and optical flow information to estimate the velocity and position of MAV. The gyro, accelerator, and magnetometer information are fused together to estimate the MAV attitude when the MAV is at static state or uniformly moving state; and the gyro only is used to estimate the MAV attitude when the MAV is accelerating or decelerating. The MAV flight data is used to verify the proposed integrated navigation scheme, and the verification results show that the proposed scheme can effectively reduce the errors of navigation parameters and improve navigation precision.


Sensors ◽  
2011 ◽  
Vol 11 (12) ◽  
pp. 11856-11870 ◽  
Author(s):  
Davinia Font ◽  
Marcel Tresanchez ◽  
Tomàs Pallejà ◽  
Mercè Teixidó ◽  
Jordi Palacín

2011 ◽  
Vol 25 (3) ◽  
pp. 699-711 ◽  
Author(s):  
Pablo Guzmán ◽  
Javier Díaz ◽  
Jarno Ralli ◽  
Rodrigo Agís ◽  
Eduardo Ros
Keyword(s):  

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4679
Author(s):  
Wen-Cheng Vincent Wang ◽  
Tai-Hung Lin ◽  
Chun-Hu Liu ◽  
Chih-Wen Su ◽  
Shih-Chun Candice Lung

Traffic emission is one of the major contributors to urban PM2.5, an important environmental health hazard. Estimating roadside PM2.5 concentration increments (above background levels) due to vehicles would assist in understanding pedestrians’ actual exposures. This work combines PM2.5 sensing and vehicle detecting to acquire roadside PM2.5 concentration increments due to vehicles. An automatic traffic analysis system (YOLOv3-tiny-3l) was applied to simultaneously detect and track vehicles with deep learning and traditional optical flow techniques, respectively, from governmental cameras that have low resolutions of only 352 × 240 pixels. Evaluation with 20% of the 2439 manually labeled images from 23 cameras showed that this system has 87% and 84% of the precision and recall rates, respectively, for five types of vehicles, namely, sedan, motorcycle, bus, truck, and trailer. By fusing the research-grade observations from PM2.5 sensors installed at two roadside locations with vehicle counts from the nearby governmental cameras analyzed by YOLOv3-tiny-3l, roadside PM2.5 concentration increments due to on-road sedans were estimated to be 0.0027–0.0050 µg/m3. This practical and low-cost method can be further applied in other countries to assess the impacts of vehicles on roadside PM2.5 concentrations.


Sign in / Sign up

Export Citation Format

Share Document