research grade
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 110)

H-INDEX

17
(FIVE YEARS 6)

Author(s):  
Bing Zhai ◽  
Yu Guan ◽  
Michael Catt ◽  
Thomas Plötz

Sleep is a fundamental physiological process that is essential for sustaining a healthy body and mind. The gold standard for clinical sleep monitoring is polysomnography(PSG), based on which sleep can be categorized into five stages, including wake/rapid eye movement sleep (REM sleep)/Non-REM sleep 1 (N1)/Non-REM sleep 2 (N2)/Non-REM sleep 3 (N3). However, PSG is expensive, burdensome and not suitable for daily use. For long-term sleep monitoring, ubiquitous sensing may be a solution. Most recently, cardiac and movement sensing has become popular in classifying three-stage sleep, since both modalities can be easily acquired from research-grade or consumer-grade devices (e.g., Apple Watch). However, how best to fuse the data for greatest accuracy remains an open question. In this work, we comprehensively studied deep learning (DL)-based advanced fusion techniques consisting of three fusion strategies alongside three fusion methods for three-stage sleep classification based on two publicly available datasets. Experimental results demonstrate important evidences that three-stage sleep can be reliably classified by fusing cardiac/movement sensing modalities, which may potentially become a practical tool to conduct large-scale sleep stage assessment studies or long-term self-tracking on sleep. To accelerate the progression of sleep research in the ubiquitous/wearable computing community, we made this project open source, and the code can be found at: https://github.com/bzhai/Ubi-SleepNet.


Author(s):  
Joel T. Martin ◽  
Joana Pinto ◽  
Daniel Bulte ◽  
Manuel Spitschan

AbstractWe introduce PyPlr—a versatile, integrated system of hardware and software to support a broad spectrum of research applications concerning the human pupillary light reflex (PLR). PyPlr is a custom Python library for integrating a research-grade video-based eye-tracker system with a light source and streamlining stimulus design, optimisation and delivery, device synchronisation, and extraction, cleaning, and analysis of pupil data. We additionally describe how full-field, homogenous stimulation of the retina can be realised with a low-cost integrating sphere that serves as an alternative to a more complex Maxwellian view setup. Users can integrate their own light source, but we provide full native software support for a high-end, commercial research-grade 10-primary light engine that offers advanced control over the temporal and spectral properties of light stimuli as well as spectral calibration utilities. Here, we describe the hardware and software in detail and demonstrate its capabilities with two example applications: (1) pupillometer-style measurement and parametrisation of the PLR to flashes of white light, and (2) comparing the post-illumination pupil response (PIPR) to flashes of long and short-wavelength light. The system holds promise for researchers who would favour a flexible approach to studying the PLR and the ability to employ a wide range of temporally and spectrally varying stimuli, including simple narrowband stimuli.


2021 ◽  
Author(s):  
Srividya Pattisapu ◽  
Supratim Ray

Stimulus-induced narrow-band gamma oscillations (30-70 Hz) in human electro - encephalograph (EEG) have been linked to attentional and memory mechanisms and are abnormal in mental health conditions such as autism, schizophrenia and Alzheimer's Disease. This suggests that gamma oscillations could be valuable both as a research tool and an inexpensive, non-invasive biomarker for disease evaluation. However, since the absolute power in EEG decreases rapidly with increasing frequency following a "1/f" power law, and the gamma band includes line noise frequency, these oscillations are highly susceptible to instrument noise. Previous studies that recorded stimulus-induced gamma oscillations used expensive research-grade EEG amplifiers to address this issue. While low-cost EEG amplifiers have become popular in Brain Computer Interface applications that mainly rely on low-frequency oscillations (<30 Hz) or steady-state-visually-evoked-potentials, whether they can also be used to measure stimulus-induced gamma oscillations is unknown. We recorded EEG signals using a low-cost, open-source amplifier (OpenBCI) and a traditional, research-grade amplifier (Brain Products GmbH) in male (N = 6) and female (N = 5) subjects (22-29 years) while they viewed full-screen static gratings that are known to induce gamma oscillations. OpenBCI recordings showed gamma response in almost all the subjects who showed a gamma response in Brain Products recordings, and the spectral and temporal profiles of these responses in alpha (8-13 Hz) and gamma bands were highly correlated between OpenBCI and Brain Products recordings. These results suggest that low-cost amplifiers can potentially be used in stimulus induced gamma response detection, making its research, and application in medicine more accessible.


2021 ◽  
Author(s):  
Samuel Ovalle ◽  
E. Viamontes ◽  
Tony Thomas

Digital Light Processing (DLP) 3D printing allows for the creation of parts with advanced engineering materials and geometries difficult to produce through conventional manufacturing techniques. Photosensitive resin monomers are activated with a UV-producing LCD screen to polymerize, layer by layer, forming the desired part. With the right mixture of photosensitive resin and advanced engineering powder material, useful engineering-grade parts can be produced. The Bison 1000 is a research-grade DLP printer that permits the user to change many parameters, in order to discover an optimal method for producing 3D parts of any material of interest. In this presentation, the process parameter optimization and their influence on the 3D printed parts through DLP technique will be discussed. The presentation is focused on developing 3D printable slurry, printing of complex ceramic lattice structures, as well as post heat treatment of these DLP-produced parts.


2021 ◽  
Author(s):  
Ian Boutle ◽  
Wayne Angevine ◽  
Jian-Wen Bao ◽  
Thierry Bergot ◽  
Ritthik Bhattacharya ◽  
...  

Abstract. An intercomparison between 10 single-column (SCM) and 5 large-eddy simulation (LES) models is presented for a radiation fog case study inspired by the LANFEX field campaign. 7 of the SCMs represent single-column equivalents of operational numerical weather prediction (NWP) models, whilst 3 are research-grade SCMs designed for fog simulation, and the LES are designed to reproduce in the best manner currently possible the underlying physical processes governing fog formation. The LES model results are of variable quality, and do not provide a consistent baseline against which to compare the NWP models, particularly under high aerosol or cloud droplet number (CDNC) conditions. The main SCM bias appears to be toward over-development of fog, i.e. fog which is too thick, although the inter-model variability is large. In reality there is a subtle balance between water lost to the surface and water condensed into fog, and the ability of a model to accurately simulate this process strongly determines the quality of its forecast. Some NWP-SCMs do not represent fundamental components of this process (e.g. cloud droplet sedimentation) and therefore are naturally hampered in their ability to deliver accurate simulations. Finally, we show that modelled fog development is as sensitive to the shape of the cloud droplet size distribution, a rarely studied or modified part of the microphysical parametrization, as it is to the underlying aerosol or CDNC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Carol Maher ◽  
Kimberley Szeto ◽  
John Arnold

Abstract Background Wearable activity monitors (WAMs, e.g. Fitbits and research accelerometers) show promise for helping health care professionals (HCPs) measure and intervene on patients’ activity patterns. This study aimed to describe the clinical use of WAMs within South Australia, barriers and enablers, and future opportunities for large-scale clinical use. Methods A descriptive qualitative study was undertaken using semi-structured interviews. Participants were HCPs with experience using WAMs in South Australian clinical settings. Commencing with participants identified through the research team’s professional networks, snowball recruitment continued until all identified eligible HCPs had been invited. Semi-structured interviews were used to explore the research aims, with quantitative data analysed descriptively, and qualitative data analysed thematically. Results 18 participants (physiotherapists n = 8, exercise physiologists n = 6, medical consultants n = 2, and research personnel recommended by medical consultants n = 2), represented 12 discrete “hubs” of WAM use in clinical practice, spanning rehabilitation, orthopaedics, geriatrics, intensive care, and various inpatient-, outpatient-, community-based hospital and private-practice settings. Across the 12 hubs, five primarily used Fitbits® (various models), four used research-grade accelerometers (e.g. GENEActiv, ActivPAL and StepWatch accelerometers), one used Whoop Bands® and another used smartphone-based step counters. In three hubs, WAMs were used to observe natural activity levels without intervention, while in nine they were used to increase (i.e. intervene on) activity. Device selection was typically based on ease of availability (e.g. devices borrowed from another department) and cost-economy (e.g. Fitbits® are relatively affordable compared with research-grade devices). Enablers included device characteristics (e.g. accuracy, long battery life, simple metrics such as step count) and patient characteristics (e.g. motivation, rehabilitation population, tech-savvy), whilst barriers included the HCPs’ time to download and interpret the data, multidisciplinary team attitudes and lack of protocols for managing the devices. Conclusions At present, the use of WAMs in clinical practice appears to be fragmented and ad hoc, though holds promise for understanding patient outcomes and enhancing therapy. Future work may focus on developing protocols for optimal use, system-level approaches, and generating cost-benefit data to underpin continued health service funding for ongoing/wide-spread WAM use.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna L. Schwabe ◽  
Connor J. Hansen ◽  
Richard M. Hyslop ◽  
Mitchell E. McGlaughlin

Currently in the United States, the sole licensed facility to cultivate Cannabis sativa L. for research purposes is the University of Mississippi, which is funded by the National Institute on Drug Abuse (NIDA). Studies researching Cannabis flower consumption rely on NIDA-supplied “research grade marijuana.” Previous research found that cannabinoid levels of NIDA-supplied Cannabis do not align with commercially available Cannabis. We sought to investigate the genetic identity of Cannabis supplied by NIDA relative to common categories within the species. This is the first genetic study to include “research grade marijuana” from NIDA. Samples (49) were assigned as Wild Hemp (feral; 6) and Cultivated Hemp (3), NIDA (2), CBD drug type (3), and high THC drug type subdivided into Sativa (11), Hybrid (14), and Indica (10). Ten microsatellites targeting neutral non-coding regions were used. Clustering and genetic distance analyses support a division between hemp and drug-type Cannabis. All hemp samples clustered genetically, but no clear distinction of Sativa, Hybrid, and Indica subcategories within retail marijuana samples was found. Interestingly, the two analyzed “research grade marijuana” samples obtained from NIDA were genetically distinct from most drug-type Cannabis available from retail dispensaries. Although the sample size was small, “research grade marijuana” provided for research is genetically distinct from most retail drug-type Cannabis that patients and patrons are consuming.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5488
Author(s):  
Suha Elderderi ◽  
Laura Wils ◽  
Charlotte Leman-Loubière ◽  
Hugh J. Byrne ◽  
Igor Chourpa ◽  
...  

Raman spectroscopy is a label-free, non-destructive, non-invasive analytical tool that provides insight into the molecular composition of samples with minimum or no sample preparation. The increased availability of commercial portable Raman devices presents a potentially easy and convenient analytical solution for day-to-day analysis in laboratories and production lines. However, their performance for highly specific and sensitive analysis applications has not been extensively evaluated. This study performs a direct comparison of such a commercially available, portable Raman system, with a research grade Raman microscope system for the analysis of water content of Natural Deep Eutectic Solvents (NADES). NADES are renewable, biodegradable and easily tunable “green” solvents, outcompeting existing organic solvents for applications in extraction from biomass, biocatalysis, and nanoparticle synthesis. Water content in NADES is, however, a critical parameter, affecting their properties, optimal use and extraction efficiency. In the present study, portable Raman spectroscopy coupled with Partial Least Squares Regression (PLSR) is investigated for rapid determination of water content in NADES samples in situ, i.e., directly in glassware. Three NADES systems, namely Betaine Glycerol (BG), Choline Chloride Glycerol (CCG) and Glucose Glycerol (GG), containing a range of water concentrations between 0% (w/w) and 28.5% (w/w), were studied. The results are directly compared with previously published studies of the same systems, using a research grade Raman microscope. PLSR results demonstrate the reliability of the analysis, surrendering R2 values above 0.99. Root Mean Square Errors Prediction (RMSEP) of 0.6805%, 0.9859% and 1.2907% w/w were found for respectively unknown CCG, BG and GG samples using the portable device compared to 0.4715%, 0.3437% and 0.7409% w/w previously obtained by analysis in quartz cuvettes with a Raman confocal microscope. Despite the relatively higher values of RMSEP observed, the comparison of the percentage of relative errors in the predicted concentration highlights that, overall, the portable device delivers accuracy below 5%. Ultimately, it has been demonstrated that portable Raman spectroscopy enables accurate quantification of water in NADES directly through glass vials without the requirement for sample withdrawal. Such compact instruments provide solvent and consumable free analysis for rapid analysis directly in laboratories and for non-expert users. Portable Raman is a promising approach for high throughput monitoring of water content in NADES that can support the development of new analytical protocols in the field of green chemistry in research and development laboratories but also in the industry as a routine quality control tool.


Sign in / Sign up

Export Citation Format

Share Document