An Optimal Task Scheduling Towards Minimized Cost and Response Time in Fog Computing Infrastructure

Author(s):  
Hemant Kumar Apat ◽  
Bibhudatta sahoo Compt ◽  
Kunal Bhaisare ◽  
Prasenjit Maiti
Author(s):  
Awangku Muhammad Iqbal Yura ◽  
S. H. Shah Newaz ◽  
Fatin Hamadah Rahman ◽  
Thien Wan Au ◽  
Gyu Myoung Lee ◽  
...  

2021 ◽  
Vol 11 (22) ◽  
pp. 10996
Author(s):  
Jongbeom Lim

As Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices are becoming increasingly popular in the era of the Fourth Industrial Revolution, the orchestration and management of numerous fog devices encounter a scalability problem. In fog computing environments, to embrace various types of computation, cloud virtualization technology is widely used. With virtualization technology, IoT and IIoT tasks can be run on virtual machines or containers, which are able to migrate from one machine to another. However, efficient and scalable orchestration of migrations for mobile users and devices in fog computing environments is not an easy task. Naïve or unmanaged migrations may impinge on the reliability of cloud tasks. In this paper, we propose a scalable fog computing orchestration mechanism for reliable cloud task scheduling. The proposed scalable orchestration mechanism considers live migrations of virtual machines and containers for the edge servers to reduce both cloud task failures and suspended time when a device is disconnected due to mobility. The performance evaluation shows that our proposed fog computing orchestration is scalable while preserving the reliability of cloud tasks.


2021 ◽  
Vol 34 (1) ◽  
pp. 66-85
Author(s):  
Yiannis Verginadis ◽  
Dimitris Apostolou ◽  
Salman Taherizadeh ◽  
Ioannis Ledakis ◽  
Gregoris Mentzas ◽  
...  

Fog computing extends multi-cloud computing by enabling services or application functions to be hosted close to their data sources. To take advantage of the capabilities of fog computing, serverless and the function-as-a-service (FaaS) software engineering paradigms allow for the flexible deployment of applications on multi-cloud, fog, and edge resources. This article reviews prominent fog computing frameworks and discusses some of the challenges and requirements of FaaS-enabled applications. Moreover, it proposes a novel framework able to dynamically manage multi-cloud, fog, and edge resources and to deploy data-intensive applications developed using the FaaS paradigm. The proposed framework leverages the FaaS paradigm in a way that improves the average service response time of data-intensive applications by a factor of three regardless of the underlying multi-cloud, fog, and edge resource infrastructure.


Sign in / Sign up

Export Citation Format

Share Document