scholarly journals Scalable Fog Computing Orchestration for Reliable Cloud Task Scheduling

2021 ◽  
Vol 11 (22) ◽  
pp. 10996
Author(s):  
Jongbeom Lim

As Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices are becoming increasingly popular in the era of the Fourth Industrial Revolution, the orchestration and management of numerous fog devices encounter a scalability problem. In fog computing environments, to embrace various types of computation, cloud virtualization technology is widely used. With virtualization technology, IoT and IIoT tasks can be run on virtual machines or containers, which are able to migrate from one machine to another. However, efficient and scalable orchestration of migrations for mobile users and devices in fog computing environments is not an easy task. Naïve or unmanaged migrations may impinge on the reliability of cloud tasks. In this paper, we propose a scalable fog computing orchestration mechanism for reliable cloud task scheduling. The proposed scalable orchestration mechanism considers live migrations of virtual machines and containers for the edge servers to reduce both cloud task failures and suspended time when a device is disconnected due to mobility. The performance evaluation shows that our proposed fog computing orchestration is scalable while preserving the reliability of cloud tasks.

2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


2021 ◽  
pp. 204388692098158
Author(s):  
Dipankar Chakrabarti ◽  
Rohit Kumar ◽  
Soumya Sarkar ◽  
Arindam Mukherjee

Industrial Internet of Things emerged as one of the major technologies enabling Industry 4.0 for industries. Multiple start-ups started working in the Industrial Internet of Things field to support this new industrial revolution. Distronix, one such Industrial Internet of Things start-up of India, started operations in 2014, when companies were not even aware of Industrial Internet of Things. Distronix started executing fixed-fee projects for implementation of Industrial Internet of Things. They also started manufacturing sensors to support large customers end-to-end in their Industry 4.0 journey. With the advent of public cloud, companies started demanding pay-per-use model for the solution Distronix provided. This posed a major challenge to Distronix as they had developed technology skills focusing fixed-fee customized project delivery for their clients. The situation demanded that they change their business model from individual project delivery to creation of product sand-box with pre-registered sensors and pre-defined visualization layer to support use cases for Industrial Internet of Things implementation in multiple industry sectors. It forced Rohit Sarkar, the 26 years old entrepreneur and owner of Distronix, to upgrade capabilities of his employees and transform the business model to support pay-per-use economy popularized by public cloud providers. The case discusses the challenges Rohit faced to revamp their business model in such an emerging technology field, like, to develop new skills of the technical people to support such novel initiative, reorienting sales people towards pay as use model, developing new concept of plug and play modular product, devising innovative pricing, better alliance strategy and finding out a super early adopter.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 282 ◽  
Author(s):  
Adrian Korodi ◽  
Ruben Crisan ◽  
Andrei Nicolae ◽  
Ioan Silea

The industry is generally preoccupied with the evolution towards Industry 4.0 principles and the associated advantages as cost reduction, respectively safety, availability, and productivity increase. So far, it is not completely clear how to reach these advantages and what their exact representation or impact is. It is necessary for industrial systems, even legacy ones, to assure interoperability in the context of chronologically dispersed and currently functional solutions, respectively; the Open Platform Communications Unified Architecture (OPC UA) protocol is an essential requirement. Then, following data accumulation, the resulting process-aware strategies have to present learning capabilities, pattern identification, and conclusions to increase efficiency or safety. Finally, model-based analysis and decision and control procedures applied in a non-invasive manner over functioning systems close the optimizing loop. Drinking water facilities, as generally the entire water sector, are confronted with several issues in their functioning, with a high variety of implemented technologies. The solution to these problems is expected to create a more extensive connection between the physical and the digital worlds. Following previous research focused on data accumulation and data dependency analysis, the current paper aims to provide the next step in obtaining a proactive historian application and proposes a non-invasive decision and control solution in the context of the Industrial Internet of Things, meant to reduce energy consumption in a water treatment and distribution process. The solution is conceived for the fog computing concept to be close to local automation, and it is automatically adaptable to changes in the process’s main characteristics caused by various factors. The developments were applied to a water facility model realized for this purpose and on a real system. The results prove the efficiency of the concept.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Jason R.C. Nurse ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
...  

The world is currently experiencing the fourth industrial revolution driven by the newest wave of digitisation in the manufacturing sector. The term Industry 4.0 (I4.0) represents at the same time: a paradigm shift in industrial production, a generic designation for sets of strategic initiatives to boost national industries, a technical term to relate to new emerging business assets, processes and services, and a brand to mark a very particular historical and social period. I4.0 is also referred to as Industrie 4.0 the New Industrial France, the Industrial Internet, the Fourth Industrial Revolution and the digital economy. These terms are used interchangeably in this text. The aim of this article is to discuss major developments in this space in relation to the integration of new developments of IoT and cyber physical systems in the digital economy, to better understand cyber risks and economic value and risk impact. The objective of the paper is to map the current evolution and its associated cyber risks for the digital economy sector and to discuss the future developments in the Industrial Internet of Things and Industry 4.0.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Zhenzhong Zhang ◽  
Wei Sun ◽  
Yanliang Yu

With the vigorous development of the Internet of Things, the Internet, cloud computing, and mobile terminals, edge computing has emerged as a new type of Internet of Things technology, which is one of the important components of the Industrial Internet of Things. In the face of large-scale data processing and calculations, traditional cloud computing is facing tremendous pressure, and the demand for new low-latency computing technologies is imminent. As a supplementary expansion of cloud computing technology, mobile edge computing will sink the computing power from the previous cloud to a network edge node. Through the mutual cooperation between computing nodes, the number of nodes that can be calculated is more, the types are more comprehensive, and the computing range is even greater. Broadly, it makes up for the shortcomings of cloud computing technology. Although edge computing technology has many advantages and has certain research and application results, how to allocate a large number of computing tasks and computing resources to computing nodes and how to schedule computing tasks at edge nodes are still challenges for edge computing. In view of the problems encountered by edge computing technology in resource allocation and task scheduling, this paper designs a dynamic task scheduling strategy for edge computing with delay-aware characteristics, which realizes the reasonable utilization of computing resources and is required for edge computing systems. This paper proposes a resource allocation scheme combined with the simulated annealing algorithm, which minimizes the overall performance loss of the system while keeping the system low delay. Finally, it is verified through experiments that the task scheduling and resource allocation methods proposed in this paper can significantly reduce the response delay of the application.


Sign in / Sign up

Export Citation Format

Share Document