Adaptive blind wideband spectrum sensing for cognitive radio based on sub-Nyquist sampling technique

Author(s):  
M. Mourad Mabrook ◽  
Ghazal A. Fahmy ◽  
Aziza I. Hussein ◽  
M. A. Abdelghany
Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1346
Author(s):  
Xinyu Xie ◽  
Zhuhua Hu ◽  
Min Chen ◽  
Yaochi Zhao ◽  
Yong Bai

Spectrum is a kind of non-reproducible scarce strategic resource. A secure wideband spectrum sensing technology provides the possibility for the next generation of ultra-dense, ultra-large-capacity communications to realize the shared utilization of spectrum resources. However, for the open collaborative sensing in cognitive radio networks, the collusion attacks of malicious users greatly affect the accuracy of the sensing results and the security of the entire network. To address this problem, this paper proposes a weighted fusion decision algorithm by using the blockchain technology. The proposed algorithm divides the single-node reputation into active reputation and passive reputation. Through the proposed token threshold concept, the active reputation is set to increase the malicious cost of the node; the passive reputation of the node is determined according to the historical data and recent performance of the blockchain. The final node weight is obtained by considering both kinds of reputation. The proposed scheme can build a trust-free platform for the cognitive radio collaborative networks. Compared with the traditional equal-gain combination algorithm and the centralized sensing algorithm based on the beta reputation system, the simulation results show that the proposed algorithm can obtain reliable sensing results with a lower number of assistants and sampling rate, and can effectively resist malicious users’ collusion attacks. Therefore, the security and the accuracy of cooperative spectrum sensing can be significantly improved in cognitive radio networks.


2021 ◽  
Vol 182 ◽  
pp. 132-139
Author(s):  
Marwa Mashhour ◽  
Aziza I. Hussein ◽  
Hussein Sh. Mogahed

2021 ◽  
Vol 166 ◽  
pp. 234-243
Author(s):  
Peng Feng ◽  
Yuebin Bai ◽  
Yuhao Gu ◽  
Jun Huang ◽  
Xiaolin Wang ◽  
...  

2015 ◽  
Vol 11 (9) ◽  
pp. 9 ◽  
Author(s):  
Yonghua Wang ◽  
Yuehong Li ◽  
Yiquan Zheng ◽  
Ting Liang ◽  
Yuli Fu

In order to maximize throughput and minimize interference of the wideband spectrum sensing problem in OFDM cognitive radio sensor networks, a linear weighted sum multi-objective algorithm based on the Particle Swarm Optimization is proposed. The multi-objective optimization advantages of Particle Swarm Optimization are utilized to solve the optimal threshold vector of the spectrum sensing problem in OFDM cognitive radio sensor networks. So the network can get a larger throughput under the condition of small interference. The simulation results show that the proposed algorithm can make larger throughput while keeping the interference is smaller in OFDM cognitive radio sensor networks. Thus the spectrum resources are used more effectively.


Sign in / Sign up

Export Citation Format

Share Document