Adaptive Sliding Mode Control for a Class of Uncertain Markovian Jump Systems with Time-Delay

Author(s):  
Youguo He ◽  
Yuanwei Jing
2020 ◽  
Vol 42 (8) ◽  
pp. 1448-1460 ◽  
Author(s):  
Majid Parvizian ◽  
Khosro Khandani ◽  
Vahid Johari Majd

In this paper, state estimation and adaptive sliding mode control (SMC) of uncertain fractional-order Markovian jump systems (FO-MJSs) with time delay and input nonlinearity are considered. A non-fragile observer is proposed to estimate the system states, and an observer-based adaptive sliding mode controller is synthesized to ensure the reachability of the sliding surfaces in the state-estimation space in finite time. The sufficient condition for stochastic stability of the error system and sliding mode dynamics is derived in the form of linear matrix inequalities (LMIs). Finally, some numerical examples are presented to illustrate the effectiveness of the proposed method.


Author(s):  
Majid Parvizian ◽  
Khosro Khandani

This article proposes a new [Formula: see text] sliding mode control strategy for stabilizing controller design for fractional-order Markovian jump systems. The suggested approach is based on the diffusive representation of fractional-order Markovian jump systems which transforms the fractional-order system into an integer-order one. Using a new Lyapunov–Krasovskii functional, the problem of [Formula: see text] sliding mode control of uncertain fractional-order Markovian jump systems with exogenous noise is investigated. We propose a sliding surface and prove its reachability. Moreover, the linear matrix inequality conditions for stochastic stability of the resultant sliding motion with a given [Formula: see text] disturbance attenuation level are derived. Eventually, the theoretical results are verified through a simulation example.


Sign in / Sign up

Export Citation Format

Share Document