Torsional vibration analysis of a geared transmission system of a large scale lathe under gravitational unbalancing torque

Author(s):  
Guo Rui ◽  
SungHyun Jang ◽  
KwangSeop Sim ◽  
YoungHyu Choi
1967 ◽  
Vol 89 (4) ◽  
pp. 605-610
Author(s):  
D. A. Klokkenga

The steady-state torsional vibration for one mode of an engine transmission system was analyzed, and the analysis was verified by experimental data. The engine transmission system included a diesel engine, torque divider which consisted of a fixed housing, single-stage torque converter and a planetary gear set, and a dynamometer. The equations of motion are derived by an energy method (LaGrange’s equation) and a numerical solution of these equations is obtained with the aid of a digital computer. The analytical and experimental results agree when empirical values for torque converter damping are used.


2019 ◽  
Vol 178 ◽  
pp. 227-244 ◽  
Author(s):  
Ivo Senjanović ◽  
Neven Hadžić ◽  
Lech Murawski ◽  
Nikola Vladimir ◽  
Neven Alujević ◽  
...  

Author(s):  
John R. Baker ◽  
Keith E. Rouch

Abstract This paper presents the development of two tapered finite elements for use in torsional vibration analysis of rotor systems. These elements are particularly useful in analysis of systems that have shaft sections with linearly varying diameters. Both elements are defined by two end nodes, and inertia matrices are derived based on a consistent mass formulation. One element assumes a cubic displacement function and has two degrees of freedom at each node: rotation about the shaft’s axis and change in angle of rotation with respect to the axial distance along the shaft. The other element assumes a linear displacement function and has one rotational degree of freedom at each node. The elements are implemented in a computer program. Calculated natural frequencies and mode shapes are compared for both tapered shaft sections and constant diameter sections. These results are compared with results from an available constant diameter element. It is shown that the element derived assuming a cubic displacement function offers much better convergence characteristics in terms of calculated natural frequencies, both for tapered sections and constant diameter sections, than either of the other two elements. The finite element code that was developed for implementation of these elements is specifically designed for torsional vibration analysis of rotor systems. Lumped inertia, lumped stiffness, and gear connection elements necessary for rotor system analysis are also discussed, as well as calculation of natural frequencies, mode shapes, and amplitudes of response due to a harmonic torque input.


Sign in / Sign up

Export Citation Format

Share Document