Mitigation of subsynchronous oscillation in the large-scale wind energy transmission system with hvdc link based on the local gain-varying control

Author(s):  
Yang Na ◽  
Wang Xitian ◽  
Yang Bingdeng ◽  
Xie Da
Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3484
Author(s):  
Tai-Lin Chang ◽  
Shun-Feng Tsai ◽  
Chun-Lung Chen

Since the affirming of global warming, most wind energy projects have focused on the large-scale Horizontal Axis Wind Turbines (HAWTs). In recent years, the fast-growing wind energy sector and the demand for smarter grids have led to the use of Vertical Axis Wind Turbines (VAWTs) for decentralized energy generation systems, both in urban and remote rural areas. The goals of this study are to improve the Savonius-type VAWT’s efficiency and oscillation. The main concept is to redesign a Novel Blade profile using the Taguchi Robust Design Method and the ANSYS-Fluent simulation package. The convex contour of the blade faces against the wind, creating sufficient lift force and minimizing drag force; the concave contour faces up to the wind, improving or maintaining the drag force. The result is that the Novel Blade improves blade performance by 65% over the Savonius type at the best angular position. In addition, it decreases the oscillation and noise accordingly. This study achieved its two goals.


1980 ◽  
Vol 5 (2) ◽  
pp. 141-169 ◽  
Author(s):  
MATANIA GINOSAR
Keyword(s):  

2014 ◽  
Vol 526 ◽  
pp. 211-216
Author(s):  
Qiong Ying Lv ◽  
Yu Shi Mei ◽  
Xi Jia Tao

As the trend of large-scale wind Power, People pay more attention to wind energy, which as a clean, renewable energy. Traditional unarmed climbing and crane lifting has been unable to meet the requirements of the equipment maintenance. Magnetic climb car can automatically crawl along the wall of the steel tower, the maintenance equipment and personnel can be sent to any height of the tower. The quality of the magnetic wall-climbing car is 550kg, which can carry 1.3 tons load. In this paper completed the magnetic wall-climbing car design and modeling, mechanical analysis in static and dynamic, obtained with the air gap and Magnetic Force curves. The application shows that the magnetic wall-climbing car meets the reliable adsorption, heavy-duty operation, simple operation etc..


Sign in / Sign up

Export Citation Format

Share Document