Experimental study of active vibration control for flexible beam by using a Stewart platform manipulator

Author(s):  
Bo Luo ◽  
Weipeng Li ◽  
Hai Huang
Author(s):  
Lawrence R. Corr ◽  
William W. Clark

Abstract This paper presents a numerical study in which active and hybrid vibration confinement is compared with a conventional active vibration control method. Vibration confinement is a vibration control technique that is based on reshaping structural modes to produce “quiet areas” in a structure as opposed to adding damping as in conventional active or passive methods. In this paper, active and hybrid confinement is achieved in a flexible beam with two pairs of piezoelectric actuators and sensors and with two vibration absorbers. For comparison purposes, active damping is achieved also with two pairs of piezoelectric actuators and sensors using direct velocity feedback. The results show that both approaches are effective in controlling vibrations in the targeted area of the beam, with direct velocity feedback being slightly more cost effective in terms of required power. When combined with passive confinement, however, each method is improved with a significant reduction in required power.


2013 ◽  
Vol 421 ◽  
pp. 579-584 ◽  
Author(s):  
Xian Jun Sheng ◽  
Sheng Zhong ◽  
Ke Xin Wang ◽  
Tao Jiang

The overall performance of large aerospace vehicles is determined to a great extent by the wings structure of aircrafts. In order to prevent wings vibration due to external interference, schemes of combined fuzzy-PID and fuzzy adapt PID controllers are proposed based on flexible beam structure. The MATLAB simulation model demonstrates that the proposed controllers not only has good dynamic characteristics, but also reduce the vibration effect greatly caused by external disturbance, which lay the foundation for the active vibration control of aircraft wings.


Sign in / Sign up

Export Citation Format

Share Document