Actively-compliant locomotion control with the hydraulic quadruped robot on rough terrain

Author(s):  
Haojian Lu ◽  
Junyao Gao ◽  
Lin Xie ◽  
Xin Li ◽  
Zhe Xu ◽  
...  
2009 ◽  
Vol 06 (01) ◽  
pp. 33-46 ◽  
Author(s):  
LEI SUN ◽  
MAX Q.-H. MENG ◽  
SHUAI LI ◽  
HUAWEI LIANG ◽  
TAO MEI

This paper proposes a novel central pattern generator (CPG) model with proprioceptive mechanism and the dynamic connectivity mechanism. It not only contains the sensory information of the environment but also contains the information of the actuators and automatically tunes the parameters of CPG corresponding to the actuators information and inner sensory information. The position of the joints linked directly with the output of CPG is introduced to the CPG to find its proprioceptive system, spontaneously making the robot realize the actuator working status, further changing the CPG output to fit the change and decrease the influence of the problematic joints or actuators on the robot being controlled. So the damage would be avoided and self-protection is implemented. Its application on the locomotion control of a quadruped robot demonstrates the effectiveness of the proposed approach.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1292 ◽  
Author(s):  
Xingdong Li ◽  
Hewei Gao ◽  
Fusheng Zha ◽  
Jian Li ◽  
Yangwei Wang ◽  
...  

This paper is focused on designing a cost function of selecting a foothold for a physical quadruped robot walking on rough terrain. The quadruped robot is modeled with Denavit–Hartenberg (DH) parameters, and then a default foothold is defined based on the model. Time of Flight (TOF) camera is used to perceive terrain information and construct a 2.5D elevation map, on which the terrain features are detected. The cost function is defined as the weighted sum of several elements including terrain features and some features on the relative pose between the default foothold and other candidates. It is nearly impossible to hand-code the weight vector of the function, so the weights are learned using Supporting Vector Machine (SVM) techniques, and the training data set is generated from the 2.5D elevation map of a real terrain under the guidance of experts. Four candidate footholds around the default foothold are randomly sampled, and the expert gives the order of such four candidates by rotating and scaling the view for seeing clearly. Lastly, the learned cost function is used to select a suitable foothold and drive the quadruped robot to walk autonomously across the rough terrain with wooden steps. Comparing to the approach with the original standard static gait, the proposed cost function shows better performance.


Author(s):  
Subhrajit Bhattacharya ◽  
Sachin Chitta ◽  
Vijay Kumar ◽  
Daniel Lee

Quadruped walking robots need to handle high obstacles like steps that are often not kinematically reachable. We present a dynamic leap that allows a quadruped robot to put its front legs up onto a high rock or ledge, a motion we have found is critical to being able to locomote over rough terrain. The leaping motion was optimized using a simulated planar quadruped model. We present experimental results for the implementation of this optimized motion on a real quadruped robot.


2011 ◽  
Vol 383-390 ◽  
pp. 7401-7405
Author(s):  
Lei Zhang ◽  
Shan Gao

With Normalized Energy Stability Margin(Sne ) as stability criterion, this paper studies the tumbles of omni-directional static walking of a quadruped robot around the line connecting two adjacent supporting legs on rough terrain, proposes the method to improve the stability of quadruped robot by increasing the (Sne ) value, which is realized by lowering the height of center of gravity(COG), and finally substantiates the feasibility of the method through a simulation experiment.


2009 ◽  
Vol 6 (1) ◽  
pp. 73-85 ◽  
Author(s):  
Panagiotis Chatzakos ◽  
Evangelos Papadopoulos

Dynamic stability allows running animals to maintain preferred speed during locomotion over rough terrain. It appears that rapid disturbance rejection is an emergent property of the mechanical system. In running robots, simple motor control seems to be effective in the negotiation of rough terrain when used in concert with a mechanical system that stabilises passively. Spring-like legs are a means for providing self-stabilising characteristics against external perturbations. In this paper, we show that a quadruped robot could be able to perform self-stable running behaviour in significantly broader ranges of forward speed and pitch rate with a suitable mechanical design, which is not limited to choosing legs spring stiffness only. The results presented here are derived by studying the stability of the passive dynamics of a quadruped robot running in the sagittal plane in a dimensionless context and might explain the success of simple, open loop running controllers on existing experimental quadruped robots. These can be summarised in (a) the self-stabilised behaviour of a quadruped robot for a particular gait is greatly related to the magnitude of its dimensionless body inertia, (b) the values of hip separation, normalised to rest leg length, and leg relative stiffness of a quadruped robot affect the stability of its motion and should be in inverse proportion to its dimensionless body inertia, and (c) the self-stable regime of quadruped running robots is enlarged at relatively high forward speeds. We anticipate the proposed guidelines to assist in the design of new, and modifications of existing, quadruped robots. As an example, specific design changes for the Scout II quadruped robot that might improve its performance are proposed.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xingdong Li ◽  
Hewei Gao ◽  
Jian Li ◽  
Yangwei Wang ◽  
Yanling Guo

Quadruped robot has great potential to walk on rough terrain, in which static gait is preferred. A hierarchical structure based controlling algorithm is proposed in this paper, in which trajectory of robot center is searched, and then static gaits are generated along such trajectory. Firstly, cost map is constructed by computing terrain features under robot body and cost of selecting footholds at default positions, and then the trajectory of robot center in 2D space is searched using heuristic A⁎ algorithm. Secondly, robot state is defined from foothold and robot pose, and then state series are searched recursively along the trajectory of robot center to generate static gaits, where a tree-like structure is used to store such states. Lastly, a classical model for quadruped robot is designed, and then the controlling algorithm proposed in the paper is demonstrated on such robot model for both structured terrain and complex unstructured terrain in a simulation environment.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 177651-177660 ◽  
Author(s):  
Shuaishuai Zhang ◽  
Ming Liu ◽  
Yanfang Yin ◽  
Xuewen Rong ◽  
Yibin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document