A hybrid segmentation approach for brain tumor extraction and detection

Author(s):  
Najlae Idrissi ◽  
Fatima Ezzahra Ajmi
Author(s):  
Safia Abbas ◽  
Abeer M. Mahmoud

Medical images magnetic resonance imaging (MRI) analysis is a very challenging domain especially in the segmentation process for predicting tumefactions with high accuracy. Although deep learning techniques achieve remarkable success in classification and segmentation phases, it remains a rich area to investigate, due to the variance of tumefactions sizes, locations and shapes. Moreover, the high fusion between tumors and their anatomical appearance causes an imprecise detection for tumor boundaries. So, using hybrid segmentation technique will strengthen the reliability and generality of the diagnostic model. This paper presents an automated hybrid segmentation approach combined with convolution neural network (CNN) model for brain tumor detection and prediction, as one of many offered functions by the previously introduced IoMT medical service “DiaMe”. The developed model aims to improve extracting region of interest (ROI), especially with the variation sizes of tumor and its locations; and hence improve the overall performance of detecting the tumor. The MRI brain tumor dataset obtained from Kaggle, where all needed augmentation, edge detection, contouring and binarization are presented. The results showed 97.32% accuracy for detection, 96.5% Sensitivity, and 94.8% for specificity.


2020 ◽  
Vol 79 (31-32) ◽  
pp. 23531-23545
Author(s):  
Ramakrishnan Sundaram ◽  
K.S Ravichandran ◽  
Premaladha Jayaraman ◽  
B Venkatraman

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 169 ◽  
Author(s):  
Ramakrishnan Sundaram ◽  
Ravichandran KS ◽  
Premaladha Jayaraman ◽  
Venkatraman B

A hybrid segmentation algorithm is proposed is this paper to extract the blood vesselsfrom the fundus image of retina. Fundus camera captures the posterior surface of the eye and thecaptured images are used to diagnose diseases, like Diabetic Retinopathy, Retinoblastoma, Retinalhaemorrhage, etc. Segmentation or extraction of blood vessels is highly required, since the analysisof vessels is crucial for diagnosis, treatment planning, and execution of clinical outcomes in the fieldof ophthalmology. It is derived from the literature review that no unique segmentation algorithm issuitable for images of different eye-related diseases and the degradation of the vessels differ frompatient to patient. If the blood vessels are extracted from the fundus images, it will make thediagnosis process easier. Hence, this paper aims to frame a hybrid segmentation algorithmexclusively for the extraction of blood vessels from the fundus image. The proposed algorithm ishybridized with morphological operations, bottom hat transform, multi-scale vessel enhancement(MSVE) algorithm, and image fusion. After execution of the proposed segmentation algorithm, thearea-based morphological operator is applied to highlight the blood vessels. To validate theproposed algorithm, the results are compared with the ground truth of the High-Resolution Fundus(HRF) images dataset. Upon comparison, it is inferred that the proposed algorithm segments theblood vessels with more accuracy than the existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document