Performance analysis on recursive single-sideband amplitude modulation for parametric loudspeakers

Author(s):  
Peifeng Ji ◽  
Woon-Seng Gan ◽  
Ee-Leng Tan ◽  
Jun Yang
2000 ◽  
Vol 23 (2) ◽  
pp. 231-246
Author(s):  
F.E. Abdel-kader ◽  
A.E. Abou Mobarka ◽  
W.S. Abouel-fadi

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Hiroaki Waraya ◽  
Masahiro Muraguchi

With the rapid development of wireless systems, the demand for frequency resources has been increasing in recent years. Therefore, it is necessary to consider the high-quality communication method that efficiently utilizes finite frequency resources. In this paper, Single Sideband 16 Pulse Amplitude Modulation (SSB 16PAM) scheme for the uplink communication is proposed. It transmits data in only Lower Sideband (LSB) without extra Hilbert components. Under Additive White Gaussian Noise (AWGN) channel environment, Bit Error Rate (BER) performance of the proposed scheme is superior by 3 dB in terms of Carrier-to-Noise Ratio (CNR) to 256 Quadrature Amplitude Modulation (256QAM) scheme with the same frequency efficiency and the same Peak-to-Average Power Ratio (PAPR). Our proposed scheme employs the original frequency domain filter on the transmitter side to form an ideal spectrum. The configuration of its process is almost similar to Single Carrier-Frequency Division Multiple Access (SC-FDMA), moreover, half of the input data on the frequency domain is removed. The proposed frequency domain filter produces the SSBmodulated spectrum with a roll-off rate of zero without degrading the BER performance.


Author(s):  
Nikolaos Voudoukis

Quadrature Amplitude Modulation or QAM is a form of modulation which is widely used for modulating data signals onto a carrier used for radio communications. QAM, when used for digital transmission for radio communications applications is able to carry higher data rates than ordinary amplitude modulated schemes and phase modulated schemes. This paper presents the various fields where QAM can be implemented, describes modulator/demodulator block diagrams for transmitters as well as receivers, provides an introduction of certain performance indicators of modulation and a list of applications using alternative implementations of QAM. Also the paper presents a simulation of QAM using Simulink (example of 16-QAM signal) with signal trajectors and constellation plots. It is compared the theoretical and simulated Bit Error Rate (BER) for 16-QAM with Gray coding in an AWGN channel. Some general conclusions are also cited.


Sign in / Sign up

Export Citation Format

Share Document