nonlinear distortions
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 59)

H-INDEX

23
(FIVE YEARS 3)

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1454
Author(s):  
Yahui Tian ◽  
Litian Wang ◽  
Yuanyuan Wang ◽  
Yang Li ◽  
Haoxiang Wu ◽  
...  

Surface acoustic wave (SAW) devices are one of the indispensable components in the radio frequency (RF) front-end of mobile phones. With the development of mobile communication technology, the requirements for linear specification of devices are more and more strict. Nonlinear distortions of SAW devices have a serious influence on the application of mobile RF modules. To satisfy the strict requirement of linearity of communication system, it is necessary to understand the generation mechanism of nonlinearity and study the accurate modeling, appropriate measurement methods, and nonlinear response elimination technology. In this paper, we summarize the research progress on the nonlinearity of SAW devices in recent years from four aspects: the generation mechanism, simulation methods, measurement system, and suppression technology. The nonlinear harmonics with the nonlinear Mason equivalent circuit model are simulated. Furthermore, harmonics and intermodulation signals of SAW filters are tested by the authors. Thanks to these research studies, it is of great significance to the development of future RF front-end modules with high linear SAW devices.


Author(s):  
Yurii Pavlenko ◽  
Sergii Kirienko ◽  
Valeriy Ogar ◽  
Olena Vаsileva

Abstract One of the fundamental improvements of the measurement standard of frequency deviation of frequency-modulated oscillations was the replacement of analog frequency-modulated generators used in DETU 09-03-95 with digital ones based on the principle of direct digital synthesis (DDS) and its next version of Trueform technology. These generators have wider ranges of frequency deviation and modulation frequencies than analog ones, but nonlinear distortion laws of the frequency modulation are not standardized. The subject of the article is the development of methods and research of these generators and frequency-modulated signals generated by them for nonlinear distortions, accompanying amplitude modulation, frequency noise. Three methods were used in the study: direct measurement; “combination frequencies” and “frequency shift”. The experiment was performed using several measurement methods, which allowed to estimate very small values of nonlinear distortion. Methods were developed and experimental estimations of concomitant amplitude modulation of DDS-generators (in frequency modulation mode), as well as their frequency noise level, were performed. An experimental evaluation of the capabilities of the analog-digital demodulator of the R&S FSL6 spectrum analyzer with the K7 option was performed, its high linearity was shown, its capabilities with respect to the frequency ranges of carrier oscillations and frequency deviation were evaluated. The research results provide a basis for the method of calibration of DDS-generators and demodulator of spectrum analyzers with the K7 option in those ranges where their parameters are not normalized (at direct current up to 8 MHz and F up to 500 kHz).


Author(s):  
Leonid A. Slavutskii ◽  
Elena V. Slavutskaya

The paper is devoted to the use of artificial neural networks for signal processing in electrical engineering and electric power industry. Direct propagation neural network (perceptron) is considered as an object in the theory of experiment planning. The variants of the neural network structure empirical choice, the quality criteria of its training and testing are analyzed. It is shown that the perceptron structure choice, the training sample, and the training algorithms require planning. Variables and parameters of neuro algorithm that can act as factors, state parameters, and disturbing influences in the framework of the experimental planning theory are discussed. The proposed approach is demonstrated by the example of neural network analysis of the industrial frequency signal of 50 Hz nonlinear distortions. The possibility of using an elementary perceptron with one hidden layer and a minimum number of neurons to correct the transformer saturation current is analyzed. The conditions under which the neuro algorithm allows one to restore the values of the main harmonic amplitude, frequency and phase with an error of no more than one percent are revealed. The signal processing in a «sliding window» with a duration of a fraction of the fundamental frequency period is proposed, and the neuro algorithm accuracy characteristics are estimated. The possibility to automate the neural network structure choosing for signal processing is discussed.


2021 ◽  
Vol 178 ◽  
pp. 107975
Author(s):  
Jean Schmith ◽  
Luiz Paulo Luna de Oliveira

Author(s):  
Rati Wongsathan ◽  
Pornchai Supnithi

Nonlinear distortions caused by partial erasure and nonlinear transition shifts interacting with inter-symbol interference, are a major hindrance to data storage systems, since they degrade detector performance. This work aims to design and optimize the neuro-fuzzy equalizer (NFE) using the multi-objective genetic algorithm (MOGA) to detect nonlinear high-density magnetic recording (MR) channels. Through the GA-assisted back-propagation algorithm and least mean square optimization, the complexity in terms of decision rules is reduced by 25% and significantly provides 65% lower signal processing computation. When applied to the perpendicular (MR) system, the proposed NFE outperforms existing equalizers such as the neural network-based equalizer, fuzzy logic equalizer, and conventional NFE for the Volterra and jitter media noise channels using 1–3 dB and 1.5–3.5 dB signal-to-noise ratio gains at the bit-error-rate of 10-4, respectively. Furthermore, compared to the other models, the NFE provides a more effective output mean square error performance for retrieving the original bit data.


Author(s):  
S. A. Naida ◽  
Y. O. Onykienko ◽  
O. I. Drozdenko ◽  
O. I. Smolenska ◽  
V. S. Baran ◽  
...  

Goal. Analysis of the effect of load inductance at the output of the class D amplifier for different values of the duration of «dead time» and assessment of the adequacy of existing mathematical models for calculating the THD at the output of the amplifier depending on the duration of «dead time». Methodology. The study of the effect of «dead time» on the THD was performed using a computer model of the half-bridge converter board EPC9035 from Efficient Power Conversion. This board contains GaN transistors EPC2022 eGaN®, the corresponding control driver and other necessary elements for operation. The use of GaN transistors has made it possible to investigate the operation in a wide range of frequent switching, both to control the motor and to amplify the audio signal. Results. It is established that the value of load inductance affects the level of nonlinear distortions caused by «dead time». At inductance values that provide a constant sign of the output current, a difference arises between the duration of the input and output pulses, which increases the THD. At inductance values, when the choke current changes sign during a pulse, there is no error between the duration of the input and output pulses. Changing the inductance changes the relationship between the error signal and the non-error signal. THD changes accordingly. At high conversion frequencies, the voltage spikes caused by the choke current through the built-in diodes during the dead time are partially compensated by overcharging the output capacitance of the transistors, which also reduces harmonic distortion. Originality. For the first time, the value of the THD at the outlets in the fallowness of the different indices of the inductance of the choke and the theoretical calculation of the value in the results of the computer model was obtained. Practical significance. The dependence of the THD values on the inductance of the choke for converters with a switching frequency range from 1 kHz to 400 kHz, which allows them to be used both to control the motor and to amplify the audio signal.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4008
Author(s):  
Xuanrui Gong ◽  
Yaowen Lv ◽  
Xiping Xu ◽  
Yuxuan Wang ◽  
Mengdi Li

The omnidirectional camera, having the advantage of broadening the field of view, realizes 360° imaging in the horizontal direction. Due to light reflection from the mirror surface, the collinearity relation is altered and the imaged scene has severe nonlinear distortions. This makes it more difficult to estimate the pose of the omnidirectional camera. To solve this problem, we derive the mapping from omnidirectional camera to traditional camera and propose an omnidirectional camera linear imaging model. Based on the linear imaging model, we improve the EPnP algorithm to calculate the omnidirectional camera pose. To validate the proposed solution, we conducted simulations and physical experiments. Results show that the algorithm has a good performance in resisting noise.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 75-80
Author(s):  
D. V. Arkhipenkov

When designing radio engineering products, at the early stages,one of the most important tasks to be solved is to determine the effective version of the system/device by analyzing all possible available versions. Therefore, the development of such systems / devices is a complex and time-consuming process, which involves an infinitely large number of iterations of calculations and simulations of various options in search of an optimal and  efficient  one.  This  article  describes  the  programs:  AppCAD from  Agilent  and  ADISimRF  from  Analog Devices. These programs have a large functionality, a lot of calculated system characteristics of the path, but each of them has shortcomings, for example, the lack of an editable database of integrated circuits (IC), the lack of dynamic range calculations for third-order intermodulation of the receiving path, theinability to optimize for nonlinear  distortions,  etc.The  purpose  of  the  article  is  to  develop  an  original  program  for  calculating  radio receiving  paths,  which  is  not  inferior  in  functionality  to  foreign  analogues  and  has  a  number  of  useful refinements for calculations. The article presents formulas forcalculating the noise figure of an analog-to-digital converter (ADC) and makes a comparative analysis of the resultsobtained with the real value. The noise figure of the radio receiving path is refined by including the reverseloss coefficient and the ADC noise figure in the formula. The program developed by the author of the article hasan editable element base, which simplifies and accelerates the calculation of the device. The algorithm of theprogram developed by the author is described, and the calculation of the system characteristics of the path for comparison with foreign analogues is given.


2021 ◽  
Author(s):  
Roland M. C. Yuen

In this thesis, an optical fiber based radio access architecture that simultaneously provides services of the wireless local area network (WLAN) and the third generation (3G) mobile communication system is investigated. The sub-carrier multiplexed (SCM) technique of the fiber optic system is considered. The SCM architecture does not require frequency conversion and plays an important role enabling the WLAN to complement the cellular mobile communication systems so that the user can have both services as needed. In the SCM architecture, the two mediums that signals propagate are the air interface and the radio over fiber (ROF) link. In the air interface, the signal experience path loss and multipath fading that have effect on the system performance. The ROF link introduces nonlinear distortions and optical noise. The uplink and downlink analysis are performed in this thesis considering all the impairments from the air interface and the ROF link. Thereafter, numerical results are generated for both the uplink and downlink to illustrate the performance of the SCM architecture. The analysis identifies the interdependent relationship of the WLAN and the WCDMA system. The numerical results graphically illustrate such interdependent relationship. In the downlink, a 5 km ROF link operating at optimal power can support a WCDMA system with 1 km radius of coverage that has 26 dB of signal to distortion and noise ratio (SDNR); and a WLAN system with 400 m radius of coverage that has 27 dB of SDNR. The throughput of IEEE 802.11 WLAN depends on the medium access control. Hence, the medium access control is investigated and the throughput expression is modified to adapt to the SCM architecture where signals travel extra distance in a fiber.


Sign in / Sign up

Export Citation Format

Share Document