Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN)

Author(s):  
Nadia Masood Khan ◽  
Gul Muhammad Khan
Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Francesco Lamonaca ◽  
Vitaliano Spagnuolo ◽  
Serena De Prisco ◽  
Domenico L Carnì ◽  
Domenico Grimaldi

The analysis of the PPG signal in the time domain for the evaluation of the blood pressure (BP) is proposed. Some features extracted from the PPG signal are used to train an Artificial Neural Network (ANN) to determine the function that fit the target systolic and diastolic BP. The data related to the PPG signals and BP used in the analysis are provided by the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC II) database. The pre-analysis of the signal to remove inconsistent data is also proposed. A set of 1750 valid pulse is considered. The 80% of the input samples is used for the training of the network. Instead, the 10% of the input data are used for the validation of the network and 10% for final test of this last. The results show as the error for both the systolic and diastolic BP evaluation is included in the range of ±3 mmHg. Tab.1 shows the results for 20 PPG pulses randomly selected analyzed together with the systolic and diastolic blood pressure furnished by MIMC and evaluated by the trained ANN. Tab.1 experimental results comparing MIMIC and the ANN results. Moreover, a suitable hardware to validate the ANN with the sphygmomanometer is designed and realized. This hardware allows clinicians to collect data according to the requirements of the validation procedure. With the sphygmomanometer the systolic and diastolic values are referred to two different PPG pulses. As a consequence, it is proposed a new hardware interface allowing the synchronized acquisition and storage of the PPG signal and clinician voice. For the validation, the clinician: (i) evaluates the BP on both the arms and assesses that no significant differences occur; (ii) plugs the PPG sensor on the finger of one arm; (iii) starts the recording of both the PPG signal and the audio signal; (iv) evaluates the BP on the other arm with sphygmomanometer and says the systolic and diastolic values when detected. Through suitable post processing algorithm, the Systolic and Diastolic values are associated to the corresponding PPG Pulses. Following this procedure, the dataset to further validate the ANN according the standard is obtained. Once the ANN is validated it will be implemented on smartphone to have always in the pocket a reliable measurement system for Blood Pressure, oximetry and heart rate.


2018 ◽  
Vol 9 (3) ◽  
pp. 75
Author(s):  
Preeti Kulkarni ◽  
Shreenivas N. Londhe

Concrete is a highly complex composite construction material and modeling using computing tools to predict concrete strength is a difficult task. In this work an effort is made to predict compressive strength of concrete after 28 days of curing, using Artificial Neural Network (ANN) and Genetic programming (GP). The data for analysis mainly consists of mix design parameters of concrete, coefficient of soft sand and maximum size of aggregates as input parameters. ANN yields trained weights and biases as the final model which sometime may impediment in its application at operational level. GP on other hand yields an equation as its output making its plausible tool for operational use. Comparison of the prediction results displays the result the model accuracy of both ANN and GP as satisfactory, giving GP a working advantage owing to its output in an equation form. A knowledge extraction technique used with the weights and biases of ANN model to understand the most influencing parameters to predict the 28 day strength of concrete, promises to prove ANN as grey box rather than a black box. GP models, in form of explicit equations, show the influencing parameters with reference to the presence of the relevant parameters in the equations.


Sign in / Sign up

Export Citation Format

Share Document