Study on Forest Fire Spread Model Based on MODIS Image

Author(s):  
Jia Wang ◽  
Zhongke Feng
2018 ◽  
Vol 76 (5) ◽  
pp. 3602-3614 ◽  
Author(s):  
Chundong Lv ◽  
Jia Wang ◽  
Fanfei Zhang

2005 ◽  
Vol 70 (594) ◽  
pp. 1-6 ◽  
Author(s):  
Yoshikazu DEGUCHI ◽  
Mamoru KOHNO ◽  
Makoto TSUJIMOTO ◽  
Tatsuhiro GOTO

2018 ◽  
Vol 83 ◽  
pp. 227-231 ◽  
Author(s):  
Michal Fečkan ◽  
Július Pačuta

2012 ◽  
Vol 28 (2) ◽  
pp. 795-810 ◽  
Author(s):  
Geoff Thomas ◽  
David Heron ◽  
Jim Cousins ◽  
Mairéad de Róiste

This paper describes the development of a GIS-based dynamic fire-spread model, with seven distinct modes of fire spread: direct contact, spontaneous ignition of claddings, piloted ignition of claddings, spontaneous ignition through windows, piloted ignition through broken windows, fire spread via non-fire-rated roofs and branding. All except the first two modes include in-built probabilities, but these can be selected individually and given user-defined values. Fire spread modes can be added to the model or altered to suit available building information. Critical details of buildings are obtained from an existing-buildings database, street surveys, or deduced using conditional probabilities from available data. Results show that comparison with actual fires is reasonable. The model could be extended with further development for use as a real time firefighting tool.


2016 ◽  
Vol 15 (1) ◽  
pp. 85-92
Author(s):  
Ágoston Restás

It is commonly known that firefighting is very expensive solution; therefore it isn’t useless to study it by the criteria of efficiency. But the meaning of efficiency for fire managers can be different from the meaning of efficiency for economists. From an economic viewpoint, it is stricter than from a technical view. Method: this research used geometric aspects of the fire spread created rectangular and concentric circles models and used basic mathematic calculations and logical conclusions. Results and discussion: The rectangular model shows the criteria of economic efficiency of firefighting. Moreover, the results from rectangular model can be transferred also to the section of concentric circles model. Based on the concentric circle model we can define both the economic efficiency of fighting forest fire and minimal criteria of successful suppression expressed by the elementary information we have regarding the actual fire.


Sign in / Sign up

Export Citation Format

Share Document