fire spread model
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 830 (1) ◽  
pp. 012028
Author(s):  
A. Muid ◽  
N. S. Aminah ◽  
M. Budiman ◽  
M. Djamal

Author(s):  
Michael A. Storey ◽  
Michael Bedward ◽  
Owen F. Price ◽  
Ross A. Bradstock ◽  
Jason J. Sharples

Fire ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 4
Author(s):  
Alexander J. Josephson ◽  
Troy M. Holland ◽  
Sara Brambilla ◽  
Michael J. Brown ◽  
Rodman R. Linn

A simple, easy-to-evaluate, surrogate model was developed for predicting the particle emission source term in wildfire simulations. In creating this model, we conceptualized wildfire as a series of flamelets, and using this concept of flamelets, we developed a one-dimensional model to represent the structure of these flamelets which then could be used to simulate the evolution of a single flamelet. A previously developed soot model was executed within this flamelet simulation which could produce a particle size distribution. Executing this flamelet simulation 1200 times with varying conditions created a data set of emitted particle size distributions to which simple rational equations could be tuned to predict a particle emission factor, mean particle size, and standard deviation of particle sizes. These surrogate models (the rational equation) were implemented into a reduced-order fire spread model, QUIC-Fire. Using QUIC-Fire, an ensemble of simulations were executed for grassland fires, southeast U.S. conifer forests, and western mountain conifer forests. Resulting emission factors from this ensemble were compared against field data for these fire classes with promising results. Also shown is a predicted averaged resulting particle size distribution with the bulk of particles produced to be on the order of 1 μm in size.


2020 ◽  
Vol 29 (3) ◽  
pp. 258 ◽  
Author(s):  
Miguel G. Cruz ◽  
Richard J. Hurley ◽  
Rachel Bessell ◽  
Andrew L. Sullivan

A field-based experimental study was conducted in 50×50m square plots to investigate the behaviour of free-spreading fires in wheat to quantify the effect of crop condition (i.e. harvested, unharvested and harvested and baled) on the propagation rate of fires and their associated flame characteristics, and to evaluate the adequacy of existing operational prediction models used in these fuel types. The dataset of 45 fires ranged from 2.4 to 10.2kmh−1 in their forward rate of fire spread and 3860 and 28000 kWm−1 in fireline intensity. Rate of fire spread and flame heights differed significantly between crop conditions, with the unharvested condition yielding the fastest spreading fires and tallest flames and the baled condition having the slowest moving fires and lowest flames. Rate of fire spread in the three crop conditions corresponded directly with the outputs from the models of Cheney et al. (1998) for grass fires: unharvested wheat → natural grass; harvested wheat (~0.3m tall stubble) → grazed or cut grass; and baled wheat (<0.1m tall stubble) → eaten-out grass. These models produced mean absolute percent errors between 21% and 25% with reduced bias, a result on par with the most accurate published fire spread model evaluations.


Author(s):  
X. Joey Wang ◽  
John R. J. Thompson ◽  
W. John Braun ◽  
Douglas G. Woolford

Abstract. As the climate changes, it is important to understand the effects on the environment. Changes in wildland fire risk are an important example. A stochastic lattice-based wildland fire spread model was proposed by Boychuk et al. (2007), followed by a more realistic variant (Braun and Woolford, 2013). Fitting such a model to data from remotely sensed images could be used to provide accurate fire spread risk maps, but an intermediate step on the path to that goal is to verify the model on data collected under experimentally controlled conditions. This paper presents the analysis of data from small-scale experimental fires that were digitally video-recorded. Data extraction and processing methods and issues are discussed, along with an estimation methodology that uses differential equations for the moments of certain statistics that can be derived from a sequential set of photographs from a fire. The interaction between model variability and raster resolution is discussed and an argument for partial validation of the model is provided. Visual diagnostics show that the model is doing well at capturing the distribution of key statistics recorded during observed fires.


2018 ◽  
Vol 83 ◽  
pp. 227-231 ◽  
Author(s):  
Michal Fečkan ◽  
Július Pačuta

2018 ◽  
Vol 76 (5) ◽  
pp. 3602-3614 ◽  
Author(s):  
Chundong Lv ◽  
Jia Wang ◽  
Fanfei Zhang

Sign in / Sign up

Export Citation Format

Share Document