Optimizing Kernel Functions Using Transfer Learning from Unlabeled Data

Author(s):  
M. Ehsan Abbasnejad ◽  
Dhanesh Ramachandram ◽  
Rajeswari Mandava
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shoubing Xiang ◽  
Jiangquan Zhang ◽  
Hongli Gao ◽  
Dalei Shi ◽  
Liang Chen

Current studies on intelligent bearing fault diagnosis based on transfer learning have been fruitful. However, these methods mainly focus on transfer fault diagnosis of bearings under different working conditions. In engineering practice, it is often difficult or even impossible to obtain a large amount of labeled data from some machines, and an intelligent diagnostic method trained by labeled data from one machine may not be able to classify unlabeled data from other machines, strongly hindering the application of these intelligent diagnostic methods in certain industries. In this study, a deep transfer learning method for bearing fault diagnosis, domain separation reconstruction adversarial networks (DSRAN), was proposed for the transfer fault diagnosis between machines. In DSRAN, domain-difference and domain-invariant feature extractors are used to extract and separate domain-difference and domain-invariant features, respectively Moreover, the idea of generative adversarial networks (GAN) was used to improve the network in learning domain-invariant features. By using domain-invariant features, DSRAN can adopt the distribution of the data in the source and target domains. Six transfer fault diagnosis experiments were performed to verify the effectiveness of the proposed method, and the average accuracy reached 89.68%. The results showed that the DSRAN method trained by labeled data obtained from one machine can be used to identify the health state of the unlabeled data obtained from other machines.


2012 ◽  
Vol 36 (2) ◽  
pp. 173-187 ◽  
Author(s):  
Huaxiang Zhang ◽  
Hua Ji ◽  
Xiaoqin Wang

2021 ◽  
Vol 7 (4) ◽  
pp. 66
Author(s):  
Juan Miguel Valverde ◽  
Vandad Imani ◽  
Ali Abdollahzadeh ◽  
Riccardo De Feo ◽  
Mithilesh Prakash ◽  
...  

(1) Background: Transfer learning refers to machine learning techniques that focus on acquiring knowledge from related tasks to improve generalization in the tasks of interest. In magnetic resonance imaging (MRI), transfer learning is important for developing strategies that address the variation in MR images from different imaging protocols or scanners. Additionally, transfer learning is beneficial for reutilizing machine learning models that were trained to solve different (but related) tasks to the task of interest. The aim of this review is to identify research directions, gaps in knowledge, applications, and widely used strategies among the transfer learning approaches applied in MR brain imaging; (2) Methods: We performed a systematic literature search for articles that applied transfer learning to MR brain imaging tasks. We screened 433 studies for their relevance, and we categorized and extracted relevant information, including task type, application, availability of labels, and machine learning methods. Furthermore, we closely examined brain MRI-specific transfer learning approaches and other methods that tackled issues relevant to medical imaging, including privacy, unseen target domains, and unlabeled data; (3) Results: We found 129 articles that applied transfer learning to MR brain imaging tasks. The most frequent applications were dementia-related classification tasks and brain tumor segmentation. The majority of articles utilized transfer learning techniques based on convolutional neural networks (CNNs). Only a few approaches utilized clearly brain MRI-specific methodology, and considered privacy issues, unseen target domains, or unlabeled data. We proposed a new categorization to group specific, widely-used approaches such as pretraining and fine-tuning CNNs; (4) Discussion: There is increasing interest in transfer learning for brain MRI. Well-known public datasets have clearly contributed to the popularity of Alzheimer’s diagnostics/prognostics and tumor segmentation as applications. Likewise, the availability of pretrained CNNs has promoted their utilization. Finally, the majority of the surveyed studies did not examine in detail the interpretation of their strategies after applying transfer learning, and did not compare their approach with other transfer learning approaches.


2020 ◽  
pp. 9-13
Author(s):  
A. V. Lapko ◽  
V. A. Lapko

An original technique has been justified for the fast bandwidths selection of kernel functions in a nonparametric estimate of the multidimensional probability density of the Rosenblatt–Parzen type. The proposed method makes it possible to significantly increase the computational efficiency of the optimization procedure for kernel probability density estimates in the conditions of large-volume statistical data in comparison with traditional approaches. The basis of the proposed approach is the analysis of the optimal parameter formula for the bandwidths of a multidimensional kernel probability density estimate. Dependencies between the nonlinear functional on the probability density and its derivatives up to the second order inclusive of the antikurtosis coefficients of random variables are found. The bandwidths for each random variable are represented as the product of an undefined parameter and their mean square deviation. The influence of the error in restoring the established functional dependencies on the approximation properties of the kernel probability density estimation is determined. The obtained results are implemented as a method of synthesis and analysis of a fast bandwidths selection of the kernel estimation of the two-dimensional probability density of independent random variables. This method uses data on the quantitative characteristics of a family of lognormal distribution laws.


Author(s):  
Khalid AA Abakar ◽  
Chongwen Yu

This work demonstrated the possibility of using the data mining techniques such as artificial neural networks (ANN) and support vector machine (SVM) based model to predict the quality of the spinning yarn parameters. Three different kernel functions were used as SVM kernel functions which are Polynomial and Radial Basis Function (RBF) and Pearson VII Function-based Universal Kernel (PUK) and ANN model were used as data mining techniques to predict yarn properties. In this paper, it was found that the SVM model based on Person VII kernel function (PUK) have the same performance in prediction of spinning yarn quality in comparison with SVM based RBF kernel. The comparison with the ANN model showed that the two SVM models give a better prediction performance than an ANN model.


Sign in / Sign up

Export Citation Format

Share Document