An Efficient Real-Coded Genetic Algorithm for Numerical Optimization Problems

Author(s):  
Jianwu Li ◽  
Yao Lu
2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jiquan Wang ◽  
Zhiwen Cheng ◽  
Okan K. Ersoy ◽  
Panli Zhang ◽  
Weiting Dai ◽  
...  

An improved real-coded genetic algorithm (IRCGA) is proposed to solve constrained optimization problems. First, a sorting grouping selection method is given with the advantage of easy realization and not needing to calculate the fitness value. Secondly, a heuristic normal distribution crossover (HNDX) operator is proposed. It can guarantee the cross-generated offsprings to locate closer to the better one among the two parents and the crossover direction to be very close to the optimal crossover direction or to be consistent with the optimal crossover direction. In this way, HNDX can ensure that there is a great chance of generating better offsprings. Thirdly, since the GA in the existing literature has many iterations, the same individuals are likely to appear in the population, thereby making the diversity of the population worse. In IRCGA, substitution operation is added after the crossover operation so that the population does not have the same individuals, and the diversity of the population is rich, thereby helping avoid premature convergence. Finally, aiming at the shortcoming of a single mutation operator which cannot simultaneously take into account local search and global search, this paper proposes a combinational mutation method, which makes the mutation operation take into account both local search and global search. The computational results with nine examples show that the IRCGA has fast convergence speed. As an example application, the optimization model of the steering mechanism of vehicles is formulated and the IRCGA is used to optimize the parameters of the steering trapezoidal mechanism of three vehicle types, with better results than the other methods used.


Author(s):  
Asoke Kumar Bhunia ◽  
Avijit Duary ◽  
Laxminarayan Sahoo

The goal of this paper is to introduce an application of hybrid algorithm in reliability optimization problems for a series system with parallel redundancy and multiple choice constraints to maximize the system reliability subject to system budget and also to minimize the system cost subject to minimum level of system reliability. Both the problems are solved by using penalty function technique for dealing with the constraints and hybrid algorithm. In this algorithm, the well-known real coded Genetic Algorithm is combined with Self-Organizing Migrating Algorithm. As special cases, both the problems are formulated and solved considering single component without redundancy. Finally, the proposed approach is illustrated by some numerical examples and the computational results are discussed.


2014 ◽  
Vol 31 (6) ◽  
pp. 698-717 ◽  
Author(s):  
Laxminarayan Sahoo ◽  
Asoke Kumar Bhunia ◽  
Dilip Roy

Purpose – The purpose of this paper is to formulate the reliability optimization problem in stochastic and interval domain and also to solve the same under different stochastic set up. Design/methodology/approach – Stochastic programming technique has been used to convert the chance constraints into deterministic form and the corresponding problem is transformed to mixed-integer constrained optimization problem with interval objective. Then the reduced problem has been converted to unconstrained optimization problem with interval objective by Big-M penalty technique. The resulting problem has been solved by advanced real coded genetic algorithm with interval fitness, tournament selection, intermediate crossover and one-neighbourhood mutation. Findings – A new optimization technique has been developed in stochastic domain and the concept of interval valued parameters has been integrated with the stochastic setup so as to increase the applicability of the resultant solution to the interval valued nonlinear optimization problems. Practical implications – The concept of probability distribution with interval valued parameters has been introduced. This concept will motivate the researchers to carry out the research in this new direction. Originality/value – The application of genetic algorithm is extended to solve the reliability optimization problem in stochastic and interval domain.


Sign in / Sign up

Export Citation Format

Share Document