scholarly journals A multi-objective model for the hazardous materials transportation problem based on lane reservation

Author(s):  
Zhen Zhou ◽  
Feng Chu ◽  
Ada Che ◽  
Said Mammar
2018 ◽  
Vol 10 (10) ◽  
pp. 3519 ◽  
Author(s):  
Cunrui Ma ◽  
Baohua Mao ◽  
Qi Xu ◽  
Guodong Hua ◽  
Sijia Zhang ◽  
...  

Focusing on the multi-depot vehicle routing problem (MDVRP) for hazardous materials transportation, this paper presents a multi-objective optimization model to minimize total transportation energy consumption and transportation risk. A two-stage method (TSM) and hybrid multi-objective genetic algorithm (HMOGA) are then developed to solve the model. The TSM is used to find the set of customer points served by each depot through the global search clustering method considering transportation energy consumption, transportation risk, and depot capacity in the first stage, and to determine the service order of customer points to each depot by using a multi-objective genetic algorithm with the banker method to seek dominant individuals and gather distance to keep evolving the population distribution in the second stage, while with the HMOGA, customer points serviced by the depot and the serviced orders are optimized simultaneously. Finally, by experimenting on two cases with three depots and 20 customer points, the results show that both methods can obtain a Pareto solution set, and the hybrid multi-objective genetic algorithm is able to find better vehicle routes in the whole transportation network. Compared with distance as the optimization objective, when energy consumption is the optimization objective, although distance is slightly increased, the number of vehicles and energy consumption are effectively reduced.


2019 ◽  
Vol 11 (22) ◽  
pp. 6300
Author(s):  
David M. Goldberg ◽  
Sukhwa Hong

Many key industrial and scientific processes, such as the generation of nuclear energy, are of enormous social benefit as energy demand and consumption grow over time. However, a drawback of several such processes is the production of hazardous waste materials, which often requires transportation along highway networks to treatment or disposal facilities. This waste can represent a safety hazard to civilians located along the transportation route. Most prior literature in this domain considers risk within only a single facet, and thus several important risk factors may not be considered. In our paper, we propose a multi-objective program to allow for the analysis and selection of minimally risky routes for hazardous materials transportation. The model assesses risk factors including the length of the selected route, the total population in areas surrounding the selected route, and the likelihood of an accident occurring along the selected route. Our paper uniquely uses geographic information systems (GIS) technology to model this optimization problem. This approach allows us to model risk along multiple dimensions simultaneously. We collect empirical data to test the model and present a case study for risk mitigation using a study area located in California. We show that our multi-objective approach is effective in presenting the decision-maker with a portfolio of solutions that perform well via each factor.


Author(s):  
Ashrafur Rahman ◽  
Lance Fiondella ◽  
Nicholas E. Lownes

Hazardous materials (hazmat) transportation is of concern to policymakers because of the serious safety, health, and environmental risks associated with the release of hazmat. One effective approach to minimize risks associated with hazmat transport is the prohibition of hazmat transportation on higher risk links that either pose safety hazards or increased exposure by traversing densely populated areas. Because of high risk, there are multiple stakeholders involved in hazmat transportation. While shippers and carriers are directly involved in making routing decisions, regulatory agencies influence this decision by imposing routing restrictions. In this paper, we apply a bi-objective shortest path problem to evaluate routing and regulation plans for hazmat transportation. We characterize the cost objective as the shortest path between an origin and a destination. The risk objective is to minimize the risk of exposure by restricting the link with the highest risk on the best available path from an origin to a destination. We formulate the bi-objective model and apply it to a test network. Solutions consider multiple origin-destination pairs and present a non-dominated frontier to establish routing and regulatory strategies for hazmat transportation.


Sign in / Sign up

Export Citation Format

Share Document