Tuning of PID Controller Using Whale Optimization Algorithm for Different Systems

Author(s):  
Uzair Khaleeq uz Zaman ◽  
Kanwal Naveed ◽  
Atal Anil Kumar
Author(s):  
Sujatha Nebarthi

In the present paper presents the Whale Optimization Algorithm technique (WOA) it is a partial search algorithm. To advance the improved the performance of the PID controller uses whale optimization algorithm as the optimization technique. The proposed algorithm is used to tuning the controllers very fast and tuning is very high quality in PID Controllers is most effectively. It growths the system by its main transient response and by comparing the all terms of rise time (tr), settling time (ts) and peak overshoot (% Mp). More over the three gains are (proportional (kP), integral (ki) and derivative (Kd)) of the PID controller have been enhanced by the WOA technique to control the Automatic Voltage Regulator system. In this the transient response of the terminal voltage may be observed from the well-conditioned analysis they can be suggest WOA established PID Controller and which reveal a very most upgrade strong control structure for the managing the AVR system in the Electrical Power System. The simulation result of the propounded controller has shown superior result to the other optimization techniques on PID controller along with the transient response parameters and improve and supervise the performance of the System


Author(s):  
Nitin Chouhan ◽  
Uma Rathore Bhatt ◽  
Raksha Upadhyay

: Fiber Wireless Access Network is the blend of passive optical network and wireless access network. This network provides higher capacity, better flexibility, more stability and improved reliability to the users at lower cost. Network component (such as Optical Network Unit (ONU)) placement is one of the major research issues which affects the network design, performance and cost. Considering all these concerns, we implement customized Whale Optimization Algorithm (WOA) for ONU placement. Initially whale optimization algorithm is applied to get optimized position of ONUs, which is followed by reduction of number of ONUs in the network. Reduction of ONUs is done such that with fewer number of ONUs all routers present in the network can communicate. In order to ensure the performance of the network we compute the network parameters such as Packet Delivery Ratio (PDR), Total Time for Delivering the Packets in the Network (TTDPN) and percentage reduction in power consumption for the proposed algorithm. The performance of the proposed work is compared with existing algorithms (deterministic and centrally placed ONUs with predefined hops) and has been analyzed through extensive simulation. The result shows that the proposed algorithm is superior to the other algorithms in terms of minimum required ONUs and reduced power consumption in the network with almost same packet delivery ratio and total time for delivering the packets in the network. Therefore, present work is suitable for developing cost-effective FiWi network with maintained network performance.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Sign in / Sign up

Export Citation Format

Share Document