Shape Memory Alloy Driven Soft Robot Design and Position Control Using Continuous Reinforcement Learning

Author(s):  
Wuji Liu ◽  
Zhongliang Jing ◽  
Gabriele D'Eleuterio ◽  
Wujun Chen ◽  
Tianyang Yang ◽  
...  
Author(s):  
Ermira Junita Abdullah ◽  
Josu Soriano ◽  
Iñaki Fernández de Bastida Garrido ◽  
Dayang Laila Abdul Majid

2006 ◽  
Vol 17 (5) ◽  
pp. 381-392 ◽  
Author(s):  
Hashem Ashrafiuon ◽  
Mojtaba Eshraghi ◽  
Mohammad H. Elahinia

2021 ◽  
pp. 107754632110216
Author(s):  
M Banu Sundareswari ◽  
G Then Mozhi ◽  
K Dhanalakshmi

This article dwells on two technical aspects, the design and implementation of an upgraded version of the differential shape-memory alloy–based revolute actuator/rotary actuating mechanism for stabilization and position control of a two-degree-of-freedom centrally hinged ball on beam system. The actuator is configured with differential and inclined placement of shape-memory alloy springs to provide bidirectional angular shift. The shape-memory alloy spring actuator occupies a smaller space and provides more extensive reformation with justifiable actuation force than an equally able shape-memory alloy wire. The cross or diagonal architecture of shape-memory alloy springs provides force amplification and reduces the actuator’s control effort. The shape-memory alloy spring–embodied actuator’s function is exemplified by the highly dynamic underactuated custom-designed ball balancing system. The ball position control is experimentally demonstrated by cascade control using the control laws that have been unattempted for shape-memory alloy actuated systems; the ball is positioned with linear (integer-order and fractional-order) proportional–integral–derivative controllers optimized with genetic algorithm and particle swarm optimization at the outer/primary loop. Angular control of the shape-memory alloy actuated beam is obtained with nonlinear (integer-order and fractional-order sliding mode control) control algorithms in the inner/secondary loop.


Author(s):  
S Farzaneh Hoseini ◽  
S Ali MirMohammadSadeghi ◽  
Alireza Fathi ◽  
Hamidreza Mohammadi Daniali

Shape memory alloys are among the highly applicable smart materials that have recently appealed to scientists from various fields of study. In this article, a novel shape memory alloy actuator, in the form of a rod, is introduced, and an adaptive model predictive control system is designed for position control of the developed actuator. The need for such an advanced control system emanates from the fact that modeling and controlling of shape memory alloy actuators are thwarted by their hysteresis nonlinearity, dilatory response, and high dependence on environmental conditions. Real-time identification and dynamic parameter estimation of the model are addressed according to orthogonal Laguerre functions and recursive least square algorithm. In the end, the designed control system is implemented on the experimental setup of the fabricated shape memory alloy actuator. It is observed that the designed control system successfully tracks the variable step and sinusoidal control references with startling accuracy of ±1 μm.


Sign in / Sign up

Export Citation Format

Share Document