Voice Keyword Recognition Based on Spiking Convolutional Neural Network for Human-Machine Interface

Author(s):  
Jinhai Hu ◽  
Wang Ling Goh ◽  
Zhongyi Zhang ◽  
Yuan Gao
2019 ◽  
Vol 9 (11) ◽  
pp. 2243
Author(s):  
Gianluca Giuffrida ◽  
Gabriele Meoni ◽  
Luca Fanucci

During the last years, the mobility of people with upper limb disabilities and constrained on power wheelchairs is empowered by robotic arms. Nowadays, even though modern manipulators offer a high number of functionalities, some users cannot exploit all those potentialities due to their reduced manual skills, even if capable of driving the wheelchair by means of proper Human–Machine Interface (HMI). Owing to that, this work proposes a low-cost manipulator realizing only simple tasks and controllable by three different graphical HMI. The latter are empowered using a You Only Look Once (YOLO) v2 Convolutional Neural Network that analyzes the video stream generated by a camera placed on the robotic arm end-effector and recognizes the objects with which the user can interact. Such objects are shown to the user in the HMI surrounded by a bounding box. When the user selects one of the recognized objects, the target position information is exploited by an automatic close-feedback algorithm which leads the manipulator to automatically perform the desired task. A test procedure showed that the accuracy in reaching the desired target is 78%. The produced HMIs were appreciated by different user categories, obtaining a mean score of 8.13/10.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document