High-resolution reconstruction of sparse data from dense low-resolution spatio-temporal data

Author(s):  
Qing Yang ◽  
B. Parvin
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jiansheng Peng ◽  
Kui Fu ◽  
Qingjin Wei ◽  
Yong Qin ◽  
Qiwen He

As a representative technology of artificial intelligence, 3D reconstruction based on deep learning can be integrated into the edge computing framework to form an intelligent edge and then realize the intelligent processing of the edge. Recently, high-resolution representation of 3D objects using multiview decomposition (MVD) architecture is a fast reconstruction method for generating objects with realistic details from a single RGB image. The results of high-resolution 3D object reconstruction are related to two aspects. On the one hand, a low-resolution reconstruction network represents a good 3D object from a single RGB image. On the other hand, a high-resolution reconstruction network maximizes fine low-resolution 3D objects. To improve these two aspects and further enhance the high-resolution reconstruction capabilities of the 3D object generation network, we study and improve the low-resolution 3D generation network and the depth map superresolution network. Eventually, we get an improved multiview decomposition (IMVD) network. First, we use a 2D image encoder with multifeature fusion (MFF) to enhance the feature extraction capability of the model. Second, a 3D decoder using an effective subpixel convolutional neural network (3D ESPCN) improves the decoding speed in the decoding stage. Moreover, we design a multiresidual dense block (MRDB) to optimize the depth map superresolution network, which allows the model to capture more object details and reduce the model parameters by approximately 25% when the number of network layers is doubled. The experimental results show that the proposed IMVD is better than the original MVD in the 3D object superresolution experiment and the high-resolution 3D reconstruction experiment of a single image.


2021 ◽  
Author(s):  
Stiw Herrera ◽  
Larissa Miguez da Silva ◽  
Paulo Ricardo Reis ◽  
Anderson Silva ◽  
Fabio Porto

Scientific data is mainly multidimensional in its nature, presenting interesting opportunities for optimizations when managed by array databases. However, in scenarios where data is sparse, an efficient implementation is still required. In this paper, we investigate the adoption of the Ph-tree as an in-memory indexing structure for sparse data. We compare the performance in data ingestion and in both range and punctual queries, using SAVIME as the multidimensional array DBMS. Our experiments, using a real weather dataset, highlights the challenges involving providing a fast data ingestion, as proposed by SAVIME, and at the same time efficiently answering multidimensional queries on sparse data.


Author(s):  
A. Masse ◽  
S. Christophe

On coastal areas, recent increase in production of open-access high-quality data over large areas reflects high interests in modeling and geovisualization, especially for applications of sea level rise prediction, ship traffic security and ecological protection. Research interests are due to tricky challenges from the intrinsic nature of the coastal area, which is composed of complex geographical objects of which spatial extents vary in time, especially in the intertidal zone (tides, sands, etc.). Another interest is the complex modeling of this area based on imprecise cartographic objects (coastline, highest/lowest water level, etc.). The challenge of visualizing such specific area comes thus from 3D+t information, i.e. spatio-temporal data, and their visual integration. <br><br> In this paper, we present a methodology for geovisualization issues over coastal areas. The first challenge consists in integrating multi-source heterogeneous data, i.e. raster and vector, terrestrial and hydrographic data often coming from various ‘paradigms’, while providing a homogeneous geovisualization of the coastal area and in particular the phenomenon of the water depth. The second challenge consists in finding various possibilities to geovisualize this dynamic geographical phenomenon in controlling the level of photorealism in hybrid visualizations. Our approach is based on the use of a high-resolution Digital Terrain Model (DTM) coming from high resolution LiDAR data point cloud, tidal and topographic data. We present and discuss homogeneous hybrid visualizations, based on LiDAR and map, and on, LiDAR and orthoimagery, in order to enhance the realism while considering the water depth.


Sign in / Sign up

Export Citation Format

Share Document