Malware Detection by Exploiting Deep Learning over Binary Programs

Author(s):  
Panpan Qi ◽  
Zhaoqi Zhang ◽  
Wei Wang ◽  
Chang Yao
2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 344
Author(s):  
Jeyaprakash Hemalatha ◽  
S. Abijah Roseline ◽  
Subbiah Geetha ◽  
Seifedine Kadry ◽  
Robertas Damaševičius

Recently, there has been a huge rise in malware growth, which creates a significant security threat to organizations and individuals. Despite the incessant efforts of cybersecurity research to defend against malware threats, malware developers discover new ways to evade these defense techniques. Traditional static and dynamic analysis methods are ineffective in identifying new malware and pose high overhead in terms of memory and time. Typical machine learning approaches that train a classifier based on handcrafted features are also not sufficiently potent against these evasive techniques and require more efforts due to feature-engineering. Recent malware detectors indicate performance degradation due to class imbalance in malware datasets. To resolve these challenges, this work adopts a visualization-based method, where malware binaries are depicted as two-dimensional images and classified by a deep learning model. We propose an efficient malware detection system based on deep learning. The system uses a reweighted class-balanced loss function in the final classification layer of the DenseNet model to achieve significant performance improvements in classifying malware by handling imbalanced data issues. Comprehensive experiments performed on four benchmark malware datasets show that the proposed approach can detect new malware samples with higher accuracy (98.23% for the Malimg dataset, 98.46% for the BIG 2015 dataset, 98.21% for the MaleVis dataset, and 89.48% for the unseen Malicia dataset) and reduced false-positive rates when compared with conventional malware mitigation techniques while maintaining low computational time. The proposed malware detection solution is also reliable and effective against obfuscation attacks.


2021 ◽  
Author(s):  
Huozhu Wang ◽  
Ziyuan Zhu ◽  
Zhongkai Tong ◽  
Xiang Yin ◽  
Yusi Feng ◽  
...  

2019 ◽  
Vol 14 (3) ◽  
pp. 773-788 ◽  
Author(s):  
TaeGuen Kim ◽  
BooJoong Kang ◽  
Mina Rho ◽  
Sakir Sezer ◽  
Eul Gyu Im

Author(s):  
Tajuddin Manhar Mohammed ◽  
Lakshmanan Nataraj ◽  
Satish Chikkagoudar ◽  
Shivkumar Chandrasekaran ◽  
B.S. Manjunath

2018 ◽  
Vol 24 ◽  
pp. S48-S59 ◽  
Author(s):  
ElMouatez Billah Karbab ◽  
Mourad Debbabi ◽  
Abdelouahid Derhab ◽  
Djedjiga Mouheb

Sign in / Sign up

Export Citation Format

Share Document