Volume Calculation for Power Equipment Point Cloud Based on Concave Hull Slice Method

Author(s):  
Wu Hongyan ◽  
Yang Ning ◽  
Chen Hui ◽  
Liang Weibin ◽  
Bilal Ahmad
2020 ◽  
Author(s):  
Thomas G. Bernard ◽  
Dimitri Lague ◽  
Philippe Steer

Abstract. Efficient and robust landslide mapping and volume estimation is essential to rapidly infer landslide spatial distribution, to quantify the role of triggering events on landscape changes and to assess direct and secondary landslide-related geomorphic hazards. Many efforts have been made during the last decades to develop landslide areal mapping methods, based on 2D satellite or aerial images, and to constrain empirical volume-area (V-A) allowing in turn to offer indirect estimates of landslide volume. Despite these efforts, some major issues remain including the uncertainty of the V-A scaling, landslide amalgamation and the under-detection of reactivated landslides. To address these issues, we propose a new semi-automatic 3D point cloud differencing method to detect geomorphic changes, obtain robust landslide inventories and directly measure the volume and geometric properties of landslides. This method is based on the M3C2 algorithm and was applied to a multi-temporal airborne LiDAR dataset of the Kaikoura region, New Zealand, following the Mw 7.8 earthquake of 14 November 2016. We demonstrate that 3D point cloud differencing offers a greater sensitivity to detect small changes than a classical difference of DEMs (digital elevation models). In a small 5 km2 area, prone to landslide reactivation and amalgamation, where a previous study identified 27 landslides, our method is able to detect 1431 landslide sources and 853 deposits with a total volume of 908,055 ± 215,640 m3 and 1,008,626 ± 172,745 m3, respectively. This high number of landslides is set by the ability of our method to detect subtle changes and therefore small landslides with a carefully constrained lower limit of 20 m2 (90 % with A 


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yong Liu ◽  
Yanwei Zheng

Volume calculation from 3D point cloud is widely used in engineering and applications. The existing methods either have large errors or are time-consuming. This paper focuses on the coal measurement. Based on the triangular mesh generated from the point cloud, each triangle is projected downward to the base plane to form a voxel. We derive the calculation formula of voxel by an integral method, which is more efficient than the method of decomposing voxel into tetrahedrons and more accurate than slicing methods. Furthermore, this paper proposes a Delaunay triangulation-driven volume calculation (DTVC) method. DTVC does not preserve the Delaunay triangles but directly calculates the volume in the process of triangulation. It saves memory and running time. Experimental results show that DTVC has achieved a good balance between error and efficiency.


2012 ◽  
Vol 117 (Special_Suppl) ◽  
pp. 203-210 ◽  
Author(s):  
Lijun Ma ◽  
Arjun Sahgal ◽  
Ke Nie ◽  
Andrew Hwang ◽  
Aliaksandr Karotki ◽  
...  

Object Determining accurate target volume is critical for both prescribing and evaluating stereotactic radiosurgery (SRS) treatments. The aim of this study was to determine the reliability of contour-based volume calculations made by current major SRS platforms. Methods Spheres ranging in diameter from 6.4 to 38.2 mm were scanned and then delineated on imaging studies. Contour data sets were subsequently exported to 6 SRS treatment-planning platforms for volume calculations and comparisons. This procedure was repeated for the case of a patient with 12 metastatic lesions distributed throughout the brain. Both the phantom and patient datasets were exported to a stand-alone workstation for an independent volume-calculation analysis using a series of 10 algorithms that included approaches such as slice stacking, surface meshing, point-cloud filling, and so forth. Results Contour data–rendered volumes exhibited large variations across the current SRS platforms investigated for both the phantom (−3.6% to 22%) and patient case (1.0%–10.2%). The majority of the clinical SRS systems and algorithms overestimated the volumes of the spheres, compared with their known physical volumes. An independent algorithm analysis found a similar trend in variability, and large variations were typically associated with small objects whose volumes were < 0.4 cm3 and with those objects located near the end-slice of the scan limits. Conclusions Significant variations in volume calculation were observed based on data obtained from the SRS systems that were investigated. This observation highlights the need for strict quality assurance and benchmarking efforts when commissioning SRS systems for clinical use and, moreover, when conducting multiinstitutional cross-SRS platform clinical studies.


2018 ◽  
Vol 40 (8) ◽  
pp. 3227-3246 ◽  
Author(s):  
Bin Li ◽  
Junbo Wei ◽  
Lu Wang ◽  
Bochao Ma ◽  
Mingxia Xu

Author(s):  
Sen Lin ◽  
Jianxin Huang ◽  
Wenzhou Chen ◽  
Wenlong Zhou ◽  
Jinhong Xu ◽  
...  

AbstractThis paper mainly focuses on the volume calculation of materials in the warehouse where sand and gravel materials are stored and monitored whether materials are lacking in real-time. Specifically, we proposed the sandpile model and the point cloud projection obtained from the LiDAR sensors to calculate the material volume. We use distributed edge computing modules to build a centralized system and transmit data remotely through a high-power wireless network, which solves sensor placement and data transmission in a complex warehouse environment. Our centralized system can also reduce worker participation in a harsh factorial environment. Furthermore, the point cloud data of the warehouse is colored to visualize the actual factorial environment. Our centralized system has been deployed in the real factorial environment and got a good performance.


2021 ◽  
Vol 13 (17) ◽  
pp. 3437
Author(s):  
Yuan Qi ◽  
Xuhua Dong ◽  
Pengchao Chen ◽  
Kyeong-Hwan Lee ◽  
Yubin Lan ◽  
...  

Automatic acquisition of the canopy volume parameters of the Citrus reticulate Blanco cv. Shatangju tree is of great significance to precision management of the orchard. This research combined the point cloud deep learning algorithm with the volume calculation algorithm to segment the canopy of the Citrus reticulate Blanco cv. Shatangju trees. The 3D (Three-Dimensional) point cloud model of a Citrus reticulate Blanco cv. Shatangju orchard was generated using UAV tilt photogrammetry images. The segmentation effects of three deep learning models, PointNet++, MinkowskiNet and FPConv, on Shatangju trees and the ground were compared. The following three volume algorithms: convex hull by slices, voxel-based method and 3D convex hull were applied to calculate the volume of Shatangju trees. Model accuracy was evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE). The results show that the overall accuracy of the MinkowskiNet model (94.57%) is higher than the other two models, which indicates the best segmentation effect. The 3D convex hull algorithm received the highest R2 (0.8215) and the lowest RMSE (0.3186 m3) for the canopy volume calculation, which best reflects the real volume of Citrus reticulate Blanco cv. Shatangju trees. The proposed method is capable of rapid and automatic acquisition for the canopy volume of Citrus reticulate Blanco cv. Shatangju trees.


Author(s):  
M.A. O'Keefe ◽  
Sumio Iijima

We have extended the multi-slice method of computating many-beam lattice images of perfect crystals to calculations for imperfect crystals using the artificial superlattice approach. Electron waves scattered from faulted regions of crystals are distributed continuously in reciprocal space, and all these waves interact dynamically with each other to give diffuse scattering patterns.In the computation, this continuous distribution can be sampled only at a finite number of regularly spaced points in reciprocal space, and thus finer sampling gives an improved approximation. The larger cell also allows us to defocus the objective lens further before adjacent defect images overlap, producing spurious computational Fourier images. However, smaller cells allow us to sample the direct space cell more finely; since the two-dimensional arrays in our program are limited to 128X128 and the sampling interval shoud be less than 1/2Å (and preferably only 1/4Å), superlattice sizes are limited to 40 to 60Å. Apart from finding a compromis superlattice cell size, computing time must be conserved.


Sign in / Sign up

Export Citation Format

Share Document